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ABSTRACT

Interferometers provide sparse measurements of the Fourier transform of the bright-

ness distribution for a given source in the plane of the sky. Therefore, images must be

reconstructed from these observables. Image reconstruction from interferometric data

is, in principle, a Fourier inversion problem. Nevertheless, there are some details to take

into account, particularly for the case of data obtained with optical interferometers. For

example, (a) the sparseness of the u − v coverage and; (b) the poor calibration of the

amplitude of the visibilities due to the strong non-modeled variations produced by the

atmospheric turbulence. During the last decade, several programs have been developed

in the community to reconstruct images from optical interferometric data. Nevertheless,

their proper use requires understanding their main characteristics and settings. There-

fore, the user needs training and extensive documentation to maximize their scientific

use. Here, we present comprehensive user guidelines for generating simulated inter-

ferometric observables from images, and reconstructing images from real or simulated

observables using some of the most important and widely-used reconstruction software

packages. The different chapters include a collection of examples and commands that

the user should follow in order to properly recover images from interferometric data. We

also described the properties of a newly developed Graphical User Interface which will

allow several alternative algorithms to be used and their results compared.
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1
INTRODUCTION

Except perhaps for the most simple objects, interferometric data are hard to interpret

directly and image reconstruction is required to analyze the observations. Restoring a

correct image from optical interferometric data is challenging because of the sparsity

of the measurements and of missing information. Several image reconstruction algo-

rithms have been developed to cope with optical interferometric data and most of them

are freely available. These algorithms are however not black boxes which could produce

reliable images without any human interaction. In fact, for fundamental reasons, image

reconstruction from optical interferometric data cannot be implemented by a black-

box method and user input is required to wisely choose among a number of settings.

In a nutshell, because of the sparsity of the data (which is must worse than in radio-

interferometry for instance), an infinite number of different images may explain the ob-

servations as well and additional constraints are needed to select a unique image among

all of these. The choice of such constraints must be carried out with great attention as

it has a determining influence on the resulting image. A good image reconstruction is

therefore not just the matter of having a good algorithm but also of using it correctly.

We nevertheless believe that understanding the principles of image reconstruction

and getting accustomed to the consequences of the different settings of a given algo-

rithm is not difficult. Especially nowadays, as a good number of image reconstruction

algorithms have evolved1 to be easy to play with. To make things even easier and in-

teractive, we developed a graphical user interface (GUI, see Chapter 4) which hides the

complexity of some methods and provides a unified interface for different algorithms.

Finally, the lack of a single black-box software, which can be thought as a drawback, is

really a strength as it is an incitement to try different methods and to play with their pa-

rameters. Critical analysis of the results not only helps to find the right combinations of

1for some of them, this evolution is a consequence of this JRA

1
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algorithms and parameters but provides a unique insight about the actual contents of

the data.

The objective of these cookbooks are to introduce the reader to the use of a number

of algorithms. We hope that more algorithms will be part of the interface in a near fu-

ture. The following sections provides a simple summary to recall the principles of image

reconstruction from interferometric data and list the ingredients of an image reconstruc-

tion method. These sections also introduce the notation used in this report.

Understanding the principles of image reconstruction is recommended for the proper

use of a given algorithm. Fortunately, most, if not all, image reconstruction methods fol-

low similar approaches which are described in details in a companion document (Young

and Thiébaut, 2015) as well as in comprehensive reviews (Baron, 2016; Thiébaut, 2009;

Thiébaut and Giovannelli, 2010).

Since direct inversion of the data is neither possible nor recommended, image recon-

struction algorithms proceed by iteratively solving an inverse problem where the model

of the data given the object is compared to the actual data in order to determine how to

vary the image to better fit the data while respecting given constraints such as positivity,

regularity, etc. These constraints are needed to avoid over-fitting of the data (and thus

explaining the noise as well as the significant signal) and to compensate for the sparsity

of the data which leads to an under-determined problem.

In practice, an image is represented by a discrete set of real values, say x ∈ Rn . Most

commonly, these values are those of the pixels in the sought image, consequently n can

be fairly large, in particular much larger than the number of measurements. In order

to quantitatively judge whether an image of the object of interest is in accordance with

the measurements, some numerical criterion, say fdata : Rn 7→ R, must be devised. By

convention, the smaller fdata(x) the closer are the model complex visibilities computed

from the image x to the actual data, so fdata(x) can be thought as a distance between

the model and the data. In general and in order to account for the statistics of the noise,

fdata(x) is expressed from the likelihood of the data given the model image. To be more

specific and assuming for the sake of simplicity that the complex visibilities have been

measured, the distance between the model and the data could be given by:

fdata(x) =∑
k wk

∣∣(H · x)k −Vk
∣∣2 , (1.1)

where H is a linear operator which computes the Fourier transform of the image at the

spatial frequencies sampled by the observations, (H·x)k is the model of Vk the k-th mea-

sured complex visibility and wk > 0 is a weight which depends on the accuracy of the

measurement. As optical interferometers do not directly provide complex visibilities2,

actual data criteria have different expressions than (1.1) which may differ between algo-

rithms (see for instance Meimon et al., 2005, for a convex approximation of the co-log-

likelihood of interferometric data). Nevertheless, the simple criterion gives the idea of

2to get rid of turbulence effects, the powerspectrum, phases closures and differential phases are usually mea-
sured
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the kind of data distance.

Since the data are corrupted by noise, an exact match of the measurements and of

the model is unexpected. In fact, any image is acceptable provided that it yields model

complex visibilities that differ from actual data by amounts consistent with the noise

level. Using the metric fdata(x), an image should be assumed to be compatible with the

data whenever fdata(x) is below some threshold, say:

fdata(x) ≤ η . (1.2)

Clearly, for given sparse data, there are many, possibly an infinite number of, different

images which satisfy this discrepancy principle and are compatible with the data3.

To reduce the number of possibilities, the sought image can be restricted to belong

to the setΩ ∈Rn of nonnegative and normalized images:

Ω= {
x ∈Rn ∣∣ x ≥O, 1t · x = 1

}
, (1.3)

where O and 1 are images whose pixels are all equal to zero and one respectively; thus

x ≥O taken componentwise expresses the nonnegativity of the pixel values while 1t ·x =∑
i xi is the sum of pixel values. These strict constraints (in particular the nonnegativity)

are really helpful for image reconstruction from interferometric data but are yet insuffi-

cient to select a single image out of all the ones which are compatible with data, i.e. for

which inequality (1.2) holds.

To have a unique solution, the image reconstruction problem has to be further con-

strained. Acknowledging that it is not possible to trustfully recover an image with many

features from a limited amount of data, it is natural to impose that the image be as

simple as possible (or as regular as possible) while being compatible with the observa-

tions. The most flexible way to account for such requirements is to introduce a criterion

fprior : Rn 7→ R such that the smaller fprior(x) the most simple or regular is the image

x . Then the image reconstruction amounts to "finding the most simple image which is

compatible with the observations"; formally this writes:

min
x∈Ω

fprior(x) s.t. fdata(x) ≤ η . (1.4)

The usual way to solve the constrained problem (1.4) is to use the associated Lagrangian:

L (x ,α) = fprior(x)+α fdata(x) , (1.5)

with α ≥ 0 the Lagrange multiplier associated with the constraint fdata(x) ≤ η. Techni-

cally, the multiplier α must be nonnegative because the constraint is an inequality (No-

cedal and Wright, 2006). Ifα= 0, the constraint has no incidence (it is said to be inactive)

which, in our case, means that the data are completely ignored to determine the sought

3in the case of an ideal interferometer which provides the complex visibilities, it is sufficient that the model
complex visibilities approximately match the measurements at the observed spatial frequencies, there are no
constraints for all other frequencies
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image. Obviously, we want to have α> 0. As a consequence, the bound of the inequality

should be exactly reached and fdata(x) = η.

To summarize, the solution x̂ of the image reconstruction is given by:

x̂ = argmin
x∈Ω

{
L (x ,α) = fprior(x)+α fdata(x)

}
(1.6)

where α > 0 is chosen such that fdata(x̂) = η. Since α > 0, taking µ = 1/α yields the

following equivalent formulation:

x̂ = argmin
x∈Ω

{
f (x ,µ) = fdata(x)+µ fprior(x)

}
, (1.7)

where µ> 0 can be tuned so that the constraints hold.

Depending on the considered algorithm, one of these equivalent formulations is as-

sumed and the tuning parameter (equivalently η, α or µ) is explicitly required or auto-

matically tuned by the method.



2
IMAGE RECONSTRUCTION

INTERFEROMETRIC DATA SETS

2.1. INTRODUCTION
In this chapter different tools and data sets, useful for interferometric image reconstruc-

tion are presented. In section 2.2 we start by introducing the publicly available soft-

ware ASPRO2. This software allows the generation of synthetic interferometric data sets

tailored to different instruments/observatories. The images can be generated from a

few built-in functions or by importing a file. The interferometric data sets generated by

ASPRO2 are very precise as they include, e.g., shadowing in the uv-space generations, as

well as noise models of the different instruments. Then, we present the Jean-Marie Mar-

iotti Center for Expertise in Interferometry (JMMC) and the International Astronomi-

cal Union (IAU) Interferometry Imaging Beauty Contests (section 2.3). Finally, in sec-

tion 2.4, a library allowing the generation of synthetic images (which can then be up-

loaded to ASPRO2) is presented. This library complements the possibilities of ASPRO2
built-in functions.

2.2. GENERATING SYNTHETIC DATA SETS WITH ASPRO2
ASPRO2 (A Software to PRepare Observations) is a program developed at the Jean-Marie

Mariotti Center for Expertise in Interferometry to allow users in the community to pre-

pare interferometric observations by simulating the response of different interferomet-

ric arrays. ASPRO2 uses a simple Graphical User Interface (GUI) in which the user can

introduce his/her observing constraints, for example:

• Users can search for their targets. The tool is connected to the SIMBAD database,

so that the user can look for a desired target just by specifying a name.

5
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• Users can define the observational setup. ASPRO2 allows to select an observing

date, the instrument and interferometric configuration. Once the configuration is

selected, users are able specify the integration time and the number of position

hours (u − v coverage) required.

With a given setup, ASPRO2 generates the amplitude and phase of the visibilities, the

powerspectrum (squared visibilities) and the argument of the bispectrum (i.e., closure

phases). In fact, the user is able to export the generated interferometric observables

into standard OIFITS files that can be used for modeling and image reconstruction. For

a complete information of the ASPRO2 capabilities please see: Duchene et al. (2004);

Duvert et al. (2002); Mella and Duvert (2004).

Figure 2.1: The figure displays the main ASPRO2 window. In the upper-left corner the user can specify the
name of the target(s) to be analyzed. The upper-middle selection fields allow to define the instrumental con-
figuration and observational ESO period. The upper-right panel serves to select the date of the observations
and minimum elevation of the target. The lower section displays can show the interferometric array and base-
lines, the observability of the source over the night or the u − v coverage.

2.2.1. MODELS FOR IMAGE RECONSTRUCTION

Inside the Editor menu of the ASPRO2 interface, users can corroborate and edit some

of the main properties of the target, like the magnitude in different observing bands,

the proper motions, coordinates, spectral type, etc. However, they can also define ei-

ther a geometrical model or a user-defined model of the object’s morphology. Figure 2.2

displays a screenshot of the target editor in ASPRO2. Highlighted in red, there is the sub-

panel in which the user can define a model for the selected target.
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GEOMETRICAL MODEL

Inside the Model panel, the user can select over different components to simulate the tar-

get’s morphology. Each one of them is composed by a given number of parameters that

the user may adjust in order to cover his/her needs. For example, in Figure 2.3 we show

the model of a source that is composed by two components: a central source (Gaussian)

surrounded by an elongated ring. Both of them centered in the middle of the pixel grid.

The Gaussian has a full-width-at-half-maximum of 3 mas. The ring has a minor internal

diameter of 30 mas and a width of 8 mas. The elongation ratio is of 1.5 and both com-

ponents have 50% of the flux in them. For more information about how to build models

with the pre-defined geometrical functions, the user can consult the ASPRO2 user man-

ual1 accessible thought the Help panel in the Software. Once the target model is defined,

the user can check the u−v coverage and the expected interferometric observables in the

ASPRO2 main window. Figure 2.5 shows the interferometric observables obtained with

the aforementioned model for UT observations with GRAVITY in low-resolution mode

(see Figure 2.4).

USER-DEFINED MODEL

As well as the geometrical model, ASPRO2 also allows the user to upload a pre-defined

model. The model can be either (i) a monochromatic image or (ii) a set of images in a

data cube. The images should be included in FITS files. The user can enable this option

inside the Model menu, by selecting the option User Model. In order to read correctly

the image(s) inside ASPRO2, the user must corroborate that the FITS header contains

the keywords displayed in Figure 2.6. Notice that the CDELT1 should be negative it, by

default, if the simulated image East was defined to the left. In the case the user uploads

a data cube, CDELT3 defines the increment in wavelength for each one of the frames in

the cube, CRVAL3 defines the wavelength at which the simulated bandpass begins and

CUNIT3 sets the units in which CDELT3 and CRVAL3 are defined.

Once the data cube is upload, the user can check that everything is correct in the

display panel inside the Model editor menu. If a data cube is uploaded, ASPRO2 animates

the morphological changes of the source across the simulated band. Figure 2.7 displays

an example of the ASPRO2 plot with the disk model used for the Beauty Contest 2016 was

added. After the image was uploaded, similar as with the geometrical model, the user

can adjust the desired u − v coverage and the interferometric observables. Finally, if the

simulation fulfills the desired requirements, the user can save it in a standard OIFITS
file. To do this, the user has to select the File menu and then the Export to OIFits
file(s) option.

1Also available here: http://www.jmmc.fr/twiki/bin/view/Jmmc/Software/JmmcAspro2
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Figure 2.2: The figure displays the target editor menu inside ASPRO2.

Figure 2.3: The figure displays the geometrical model menu of ASPRO2
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Figure 2.4: The figure displays the u − v coverage display as well as the instrument setup panel of ASPRO2.

Figure 2.5: The figure displays the ASPRO2 plots with the simulated interferometric observables.
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Figure 2.6: The figure displays the header keywords required to successfully upload a FITS data cube (with a
user model) to ASPRO2.

Figure 2.7: The figure displays the ASPRO2 panel with after a user-defined model has been uploaded using a
FITS file.
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2.3. THE JMMC AND BEAUTY IMAGE LIBRARIES
The page http://apps.jmmc.fr/oidata/ keeps several optical interferometric datasets,

to be shared with the community. The main goal is make available a repository of real

or simulated reduced data, in order to practice various tools, such as image reconstruc-

tion packages as the ones described in this cookbook. Included are the data used in past

IAU Interferometry Imaging Beauty Contests (from 2004 to 2010). The maintainers of

the repository are continuously accepting new entries and you should directly visit the

aforementioned link for a list of available objects and details about them.

2.4. A Yorick SYNTHETIC IMAGE LIBRARY
In addition to the Aspro2 built-in functions to generate astronomical source brightness

distributions, there is a repository available at GitHub, named YSIL (Yorick Synthetic

Image Library), with Yorick code that allows the creation of basic objects. This library

can be used to generate astronomical synthetic sources, such as stellar clusters, young

stellar objects and stellar photospheres (e.g., see Gomes et al., 2017, for some examples).

The code can be found at https://github.com/NunonuN/ysil. It is open source un-

der the GNU General Public License version 3, and it is still under development.

2.4.1. INSTALLATION

In order to use YSIL, it is necessary to install Yorick (see chapter 6, page 52 for details).

Download YSIL to any desirable folder and include ysil.i in Yorick, as in, for example

include, "ysil.i";

2.4.2. EXAMPLES

Some examples of simple structures or objects created with YSIL are illustrated in fig. 2.8.

Figure 2.8: Three uniform discs (left), a disc with Gaussian profile (centre) and three stellar photospheres (right)
created with the YSIL package, in a FOV of 20 mas.

The uniform discs were created with the following command:

http://apps.jmmc.fr/oidata/
https://github.com/NunonuN/ysil
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x= span(-10, 10, 300)(, -:1:300);

discs= ysil_uniform_disc(x, [[2, 4], [3.5, 3.5], [5.6, 1.3]], [[-6, 0], [5, 5.5],

[4, -7]], angs= [30, 0, -160]);

The Gaussian disc was obtained with

x= span(-5, 5, 500)(, -:1:500);

disc= ysil_gaussian_disc(x, [4., 2.], angs= 10);

and the stellar photospheres with

x= span(-5, 5, 400)(, -:1:400);

stars= ysil_limb_darkened_disc(x, [2.8, 4.3, 1.5], [[-5, -5], [3.5, 2], [-6.5,

7]], u= [0.1, 0.3, 0.7], norm= TRUE);



3
IMAGE RECONSTRUCTION WITH

SQUEEZE

3.1. INTRODUCTION
SQUEEZE is an open source (GPL v3) image reconstruction software developed by Fa-

bien Baron1 at Georgia State University. It uses a Monte-Carlo Markov Chain (MCMC)

approach as main minimization engine. Two type of MCMC algorithms are included:

Simulated Annealing and Parallel Tempering, both of them with Metropolis-Hasting moves.

SQUEEZE includes a full polychromatic imaging, performing a simultaneous model-

fitting to: (i) visibilities (amplitudes and phases), (ii) powerspectra, and (iii) bispectra,

or combination of them. The code has the flexibility to consider the visibility phases as

differential ones. It works either with OIFITS V1.0 or OIFITS V2.0 tables. The offi-

cial description of the algorithm can be found in Baron et al. (2010), while the source

code and its documentation are reachable at the following link: https://github.com/
fabienbaron/squeeze.

Disclaimer

The current cookbook has been written from a user perspective.

The main aim of the current document is to provide an guide of

the main characteristics of SQUEEZE following practical exam-

ples. This document does not attempt to replace the official de-

scription and software documentation. If SQUEEZE is used or

modified, the corresponding original papers and documentation

should be always cited according to the established copyright.

1e-mail: baron@chara.gsu.edu

13

https://github.com/fabienbaron/squeeze
https://github.com/fabienbaron/squeeze
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3.2. ALGORITHM DESCRIPTION
Due to the sparseness of the u−v coverage, the poor calibration of the complex visibility

amplitude and the lack of complete phase information, image reconstruction from inter-

ferometric data is an “ill-posed” inversion problem (Thiébaut, 2009, 2013; Thiébaut and

Giovannelli, 2010). Therefore, to look for the best image that fits the data, “a-priori” in-

formation should be included on the reconstruction process. From a Bayesian inference

approach, the best-fit image, xML, corresponds to the object’s brightness distribution

with the largest posterior probability Pr(x |d , m):

xML = argmaxPr
x

(x |d , m) (3.1)

where Pr(x |d , m) is:

Pr(x |d , m) ∝ Pr(x |m)Pr(d |x , m) (3.2)

In the aforementioned expression, d corresponds to the data and m to the prior

model. Pr(x |m) is the probability of the image parameters given an “a priori” assump-

tion of the true brightness distribution. Pr(x |m) is assumed to be proportional to e−µR(x),

where µ is the weight (hyperparameter) of the regularization function R(x). Pr(d |x , m)

represents the likelihood of the data given the model image (i.e. the standard χ2) and it

is proportional to e−1/2χ2(x). Taking the negative log-probabilities from Eq. 3.1, we have:

xML = argmin
x

[−ln[Pr(d |x , m)+Pr(x |m)]]

xML = argmin
x

[
−ln

[
e−1/2χ2(x) +e−µR(x)

]]
xML = argmin

x
[1/2χ2(x)+µR(x)] (3.3)

SQUEEZE aims at finding xML (as described in Eq. 3.3) using, as central engine, a

Monte Carlo Marchov Chain minimization algorithm. The MCMC algorithm uses a Sim-

ulated Annealing (SA) implementation to look for the global minimum. SA reproduces

the crystallization process of metals due to cooling or annealing. It simulates the motion

of the particles at different energetic states. When the particles are in a a high-energy

state, their individual motions do not vary so much from the rest of them. Neverthe-

less, when the system becomes cooler, the motion of the particles tend to minimize the

energetic balance. The same behavior is reproduced using SA, for the first iterations,

the search of the optimal values suggests drastic random modifications to the recon-

structed image, but progressively keeps only those that improve the reconstructed solu-

tion. As described in Baron et al. (2010), the acceptance probability of a given image in

the MCMC is based on the Boltzman/Metropolis formula:

p( j , j +1) = min[1, J ] (3.4)

or the Glauber formula:
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p( j , j +1) = min

[
1,

J

J +1

]
(3.5)

where J is defined as:

J = R(x) j+1

R(x) j

(
χ2(x) j+1

χ2(x) j

)T j

(3.6)

in the previous expression, T j corresponds to the temperature at the j-th iteration.

One of the main parameters critical for the algorithm’s performance is the adjustment of

the temperature. If this one decreases to fast, it is highly probable to be stuck in a local

minima, on the other hand, if the temperature decreases too slow, the algorithm may

require a lot of time to converge. In SQUEEZE, for the first iteration, the temperature is

settled as:

T0 =χ2
r,0(x)

γ

SF
(3.7)

where γ is the decay coefficient (convergence rate) and SF corresponds to an scaling

factor. The decay coefficient is a user defined parameter that can be settled through the

-ct option. The default value is 4.0. The temperature schedule for successive iterations

changes as follows:

T j+1 = T j + 1

τ j
(χ2

r, j (x)−γT j )

(
1− χ2

t (x)

χ2
r, j (x)

)
(3.8)

where τ j is the decay time of the temperature and χ2
t (x) is the objective χ2. This

last parameter can be defined by the user with the -fc option. The χ2
r, j (x) corresponds

to the χ2 of the reconstructed image at the j-th iteration (see also Ireland et al., 2006).

SQUEEZE has two implemented type of steps: the first type transfers randomly the flux

of an element to another; the second type interchanges the flux of two randomly selected

elements. The transfer of flux to another element depends on the χ2 value. When this is

too large, the code favors flux transfer within pixels all over the pixel grid. Nevertheless,

when the algorithm has begun to converge, the code favors flux transfer only among ad-

jacent pixels or just the interchange of flux between two of them. For more information

about the SQUEEZE algorithm please see Baron et al. (2010).

3.2.1. REGULARIZATION FUNCTIONS:
SQUEEZE allows the individual use or combinations of the following different regular-

ization functions R(x):

• Entropy (user option: -en): This regularizer ensures that the information con-

tained in the image is the minimum one (see e.g., Baron and Young, 2008; Skilling

and Bryan, 1984). The function implemented in SQUEEZE computes the sum of
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the natural logarithm of the Gamma function for each one of the non-zero pixels

in the image:

R(x) =∑
loge | Γ(x) |, ∀x 6= 0 (3.9)

• Dark Energy (user option: -de): This regularizer counts all the zero elements in

the image. The function implemented in SQUEEZE also add a value to the edges

of the image. The general formula of this regularizer is the following one:

R(x) =∑
x , ∀x = 0 (3.10)

• Uniform disk (user option: -ud): This regularizer corresponds to the squared sum

of the Lp-norm, with p=0.5, of the local gradient. The SQUEEZE implementation

ignore the image borders, and the general formula is described in Eq. 3.11.

|| ∇x ||l ,s=
√

(xl+1,s −xl ,s )2 + (xl ,s+1 −xl ,s )2

R(x) = (∑√|| ∇x ||l ,s
)2

(3.11)

• Total Variation (user option: -tv): This regularization function quantifies the

spatial gradient distribution of the images instead of the intensity distribution

(Strong and Chan, 2003). For brightness distributions that tend to be piece-wise

smooth, the gradient field is sparse, having large values where the image shows

discontinuities. The SQUEEZE implementation ignore the image borders, and the

general formula is described in Eq. 3.12.

|| ∇x ||l ,s=
√

(xl+1,s −xl ,s )2 + (xl ,s+1 −xl ,s )2

R(x) =∑ || ∇x ||l ,s (3.12)

• L0 sparsity norm (user option: -l0): This regularizer accounts for the total num-

ber of non-zero pixels in the image. If an image is reconstructed subject to this

function, it will be forced to be the sparsest solution. In contrast with other soft-

ware SQUEEZE can optimize non-convex functions like the L0-norm. The mathe-

matical expression of this regularizer is the following one:

L0 = 1, ∀x > 0

R(x) =∑
L0 (3.13)

• L2 norm (user option: -l2): This function is part of the Lp-norm family of re-

lations that smooth the reconstructed image by accounting for the total of the

squared value of the pixels in a given grid (Tikhonov and Arsenin, 1977). The math-

ematical expression of this regularizer is the following one:

R(x) =∑
x2 (3.14)
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• Transpectral L2 regularization (user option: -ts): This regularization function is

important when a polychromatic reconstruction is done. The function computes

the L2-norm of the pixels across the different spectral channels in the data sets.

The mathematical expression of this regularizer is the following one:

R(x) =∑
n

√∑
l

∑
s

(xλ0
l ,s )2 + (xλ1

l ,s )2 + (xλ2
l ,s )2...(xλn

l ,s )2 (3.15)

• Field of view (user option: -fv): As a default parameter, SQUEEZE moves the im-

age to the centroid position of the frame.

• Prior image (user option: -p): SQUEEZE also can use a pre-defined model image

as regularizer. If this option is selected, the code computes the sum of the negative

logarithm of the non-zero pixels in the prior image, L:

R(x) =∑
n
−logL (3.16)

• Special Regularizers (user options: -l0CDF53, -l1CDF53, -l0CDF97, -l1CDF97,
-l0ATROUS, -l1ATROUS): SQUEEZE has a series of regularizers based on the the-

ory of compressed sensing. The code is able to retrieve the L1- or the L0-norm of

the decomposition coefficients of the image on a selected compression basis. The

code has implemented the CDF 5/3, CDF 9/7 and “a-trois” wavelet transforma-

tions.

3.3. INSTALLATION AND CONFIGURATION
SQUEEZE is a stand-alone package that can be retrieved from the following GitHub repos-

itory: https://github.com/fabienbaron/squeeze. The code is written in C and it is

compatible with OpenMP. The code requires gcc to be compiled. This compiler is native

in most of the Linux distributions. Nevertheless, it has to be installed by the user in OSX.

The GitHub repository contains all the necessary instructions to install these compiler.

However, the most reliable ways to do it on an OSX system is through the macports 2 or

the Homebrew3 environments. According to the source repository, once the compiler and

dependencies are satisfied, the SQUEEZE installation is relatively simple, a sequence of

the following commands has to be executed:

• Download the current version of the code from the host repository or use the fol-

lowing git command:

git clone https://github.com/fabienbaron/squeeze.git

• Go inside the SQUEEZE main directory and update the OIFITSLIB module with

the following command:

2https://www.macports.org/
3http://brew.sh/index_es.html

https://github.com/fabienbaron/squeeze
https://www.macports.org/
http://brew.sh/index_es.html
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git submodule update --init

• Inside the main SQUEEZE directory use the following cmake commands to build

the executable:

cd squeeze/build

cmake ..

make

• Once the executable is created the user can add it to the global path. For a bash

shell use: export PATH=/path/to/SQUEEZE main dir/bin $PATH For a tsch shell

use: setenv PATH $PATH:/path/to/SQUEEZE main dir/bin

If everything went well, the user should be able to execute squeeze from a terminal

session. A simple test to identify any problem in the installation is to type the following

command in the prompt:

squeeze -h

This command should list all the SQUEEZE options available to the user. These op-

tions are divided into six main categories: (i) Main image settings, (ii) Output settings,

(iii) Simultaneous model fitting settings, (iv) Oifits import settings, (v) Regularization &

init settings and (vi) Convergence settings.

3.4. BASIC USAGE
One of the main advantages of SQUEEZE versus other reconstruction packages is the

large number of options and parameters that can be used. These characteristics offer a

large flexibility for the reconstruction, but it also requires more training from the user

to master all the different options. In this cookbook, some examples of the basic code

usage are included, as well as more advanced ones. Nevertheless, the user has to be
aware that image reconstruction is not a straight forward process and may require a
deep understanding of the different parameters involved.

3.4.1. EXAMPLE 1
For the first example, the model of LkHa 101 used for the 2004 Beauty Contest (Lawson

et al., 2004) has been selected. The data set was built assuming observations with the

six-station Navy Prototype Optical Interferometer (NPOI). Figure 3.1 displays the true

image used to simulate the data set as well as the simulated u − v coverage. The data

set consisted of 15 baselines tracked at 15 different hour-angles. For this example, the

OIFITS file only consisted of squared visibilities and closure phases.
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Figure 3.1: The left: panel displays the model image of LkHa 101 used to simulate the NPOI visibilities. The
right panel displays the u − v coverage of the interferometric data. Each different color indicates a different
baseline.

3.4.2. RECONSTRUCTION WITHOUT REGULARIZATION:
To begin with a reconstruction, the pixel grid and pixel size should be defined by the

user. As a consequence of mapping the interferometric data into a discrete grid of pixels,

the user should be aware of avoiding field-of-view aliasing, at the time the field-of-view

is chosen large enough to sample all the measured spatial frequencies in the data. As a

rule of thumb, the pixel size of the reconstructed image should be of the order of:

∆θ ≤ λ

4Bmax
(3.17)

where Bmax corresponds to the maximum baseline length in the interferometric ar-

ray. In this case, the wavelength, λ corresponds to 0.55µm and the maximum baseline

length corresponds to 66.4 meters. Therefore, the pixel size of the reconstructed image

should be of the order of ∆θ ∼ 0.4 mas. The following SQUEEZE command allows the

reconstruction of an image of 128×128 pixels with the derived pixel scale using the data

set called example1.oifits. In this case, no regularization functions were selected and

only one MCMC chain with 500 iterations (default option) is used:

squeeze example1.oifits -w 128 -s 0.4

Figure 3.2 displays the reconstructed output images from SQUEEZE. Three panels are

observed, which corresponds to the mean, mode and median images obtained from the

iterations after the MCMC burn-in phase. In this case, the mean image was computed

only with the best 35% of the frames (i.e., with the lowest χ2) in the MCMC chain. If the

algorithm does not converge (i.e., it does not pass the burn-in phase in a given number of
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iterations), SQUEEZE still returns the aforementioned three images but they might have

a large number of artifacts, particularly “image ghosts” due to the misaligned frames at

different chain iterations.

Figure 3.2: The figure displays three panels that correspond to the reconstructed images delivered by SQUEEZE
after a given number of iterations for one MCMC chain. The color scheme is the same in all the frames, there-
fore the user can identify the differences between them.

The SQUEEZE output images are standard .fits files and the user could use his/her

prefered software to inspect them. Additionally to these files, SQUEEZE can deliver the

changes in the posterior probability at each one of the iterations in the chain. To habili-

tate this option, the user could run the following command as an example:

squeeze example1.oifits -w 128 -s 0.4 -fullchain

The results of the probability changes are thus saved in a file called output.fullprobs.

This file contains the following information:

• The number of chains and the number of iterations

• The objective temperature4

• The logarithmic likelihood (χ2), the prior probability and the posterior probability

for each one of the iterations in the different chains.
4If the user runs several simultaneous chains, the total number of chains should be divided by three and this

will be the number of lines that will contain the objective temperature before the posterior probability infor-
mation.
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Figure 3.3 displays the changes of the likelihood (in log space), prior probability and

posterior probability for the previous example. Notice that, although the reconstruction

did not use a prior function, the code produces a prior probability because by default

SQUEEZE uses the field of view regularizer to move the image to its centroid position at

each one of the iterations in the MCMC. In the previous example, it is clear that the effect

of the prior probability is almost negligible once the algorithm has converged. There-

fore, the posterior probability is mainly affected by the likelihood (i.e., the difference

between the interferometric observables and the model). Visualizing the .fullprobs
file is particularly interesting to identify whether the algorithm is properly converging or

not. Additionally to the .fullprobs file, SQUEEZE also generates a file that contains the

reconstructed image at each iterations of the MCMC and it is specially useful to make a

statistical analysis of the frames selected for the final image. This file is usually named

output_fullchain.fits.gz.

3.4.3. RECONSTRUCTION WITH REGULARIZATION:
Now that the basic reconstruction with SQUEEZE has been described, it is time to test

the reconstruction using some regularization functions. Selecting a regularizer is not an

easy task and strongly depends on the “prior” knowledge that the user has of the source’s

brightness distribution. There would be targets for which the structure is well-known

(e.g., a binary) or that could be inferred from a parametric model (e.g., a disk or gaus-

sian envelope), but there would be others more difficult to deduce. SQUEEZE allows to

use several regularization functions simultaneously. Nevertheless, the more regularizers

are used, the more difficult is to estimate the optimal values of the hyperparameters. To

reconstruct the image with a given regularization, the user should check the correspond-

ing option in SQUEEZE. For example, the following commands will serve to reconstruct

the image with the associated regularizers:

• Reconstruction with total variation and an hyperparameter value, µTV, of 100:

squeeze example1.oifits -w 128 -s 0.4 -tv 10

• Reconstruction with uniform disk and an hyperparameter value, µUD, of 10:

squeeze example1.oifits -w 128 -s 0.4 -ud 10

• Reconstruction with L0-norm and an hyperparameter value, µL0, of 10:

squeeze example1.oifits -w 128 -s 0.4 -l0 10

Figure 3.4 displays the reconstructed images with the previous parameters and Fig-

ure 3.5 displays the posterior probability for each one of the iterations. Notice how, al-

though the probability converged for the three images, the recovered image distribution

is quite different among the reconstructions. Therefore, caution should be taken by the
user, when a regularization is selected.
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Figure 3.3: The figure displays a plot of the probability (in log space) changes for each one of the iterations
in the MCMC. The likelihood, prior probability and posterior probability are displayed with different colors
(see label in the image). Notice how after iteration number 50, the value of the posterior probability is quasi-
constant around ∼250, which corresponds to a total reduced χ2

r ∼1.04, indicating that the code has properly
converged.

Figure 3.4: The image displays three panels that correspond to the reconstructed images with three different
regularizers (see labels in the image). The color scheme is the same among them.
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Figure 3.5: The image displays three panels that correspond to the posterior probability convergence with
three different regularizers (see labels in the image).

SELECTION OF THE HYPERPARAMETERS µi

The hyperparameters µi control the trade-off between the χ2 and the prior information

of the brightness distribution encoded in the regularizers Ri (x). Therefore, selecting the

appropriate values of µi is crucial for the image reconstruction process. One of the most

common methods to select the optimum value of a given µ is the L-curve. It computes

the image solution for several values of µ, characterizing the response of the prior term

versus the χ2. This relation shows an “L-shaped” curve (Bose et al., 2001; Hansen, 1992).

For regions along the curve where the data fidelity term changes rapidly compared with

the prior, the reconstructed image is in the over-regularized region. However, if the op-

posite is observed, the image is in the under-regularized region. The optimum value of

µ is thus associated to the elbow of the L-curve.

Therefore, to select the optimum regularization, the user must have to conduct a

search over several values of the hyperparameter. Figure 3.6 displays, as an example,

the reconstructed image using the uniform disk regularization with different values of

µ. Notice the change in the object morphology from the under-regularized (µ< 5) to the

over-regularized region (µ> 5). Sometimes the L-curve exhibits more than one elbow. In

cases like this, a rule of thumb is to use the optimal value that corresponds to the inflec-

tion point with the smallest χ2. Figure 3.7 displays the L-curve for the reconstructions

presented previously.

SQUEEZE WITH SEVERAL CHAINS

One of the advantages of the MCMC implementation in SQUEEZE, is the possibility to

perform the reconstructions using several simultaneous chains. This option is partic-

ularly important to test the outcome of the reconstruction, even if the code has con-

verged. Analyzing the outcomes of several chains help to identify artifacts in the image

and to make statistics about the most probable brightness distribution of the target. The

-chains option uses a parallel implementation to compute simultaneously the recon-
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Figure 3.6: The image shows the impact of µ on the image reconstruction process. Seven reconstructed images
of LkHa 101 are shown using different hyperparameter values. Notice the changes in the reconstructed image
depending on the µ value.

Figure 3.7: L-curve obtained with different values of µ using the Uniform Disk regularizer. The vertical axis
displays the value of R(x) and the horizontal axis the χ2. The optimal value of µ is at the elbow of the curve
with the smallest χ2, in this case it is close to 5.0.
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structions. The user should check what is the maximum number of chains that can be

set according to the available computer facilities. As an example to habilitate this option

with 50 simultaneous chains, the user could run the following command:

squeeze example1.oifits -w 128 -s 0.4 -tv 10 -chains 50

Figure 3.8: The Figure shows individual likelihood and prior distributions, as well as the joined distribution of
50 chains with 100 iterations.

Figure 3.8 displays the distributions of the likelihood and prior probability for the

last 100 iterations of 50 chains. Notice how both correspond to a normal distribution.

The joint distribution shows also how the different chains converged to a given value.

Therefore, in order to determine what is the “best image” (the most probable one), the

user has to analyze the distributions and chain outputs to decide which of them pick to

create the final image. For example, in Figure 3.9 the mean “final image” created with

the best 10 chains (i.e., with the smallest χ2) is presented together with an example of

the image fit to the observed closure phases and squared visibilities.

Up to now, the reconstructions have been made using using the same initial bright-

ness distribution for all the chains. By default, SQUEEZE uses a delta function centered

at the middle of the pixel grid. Nevertheless, it would be particularly important to test

the reconstruction with different initial brightness distribution, specially for different

chains. To do this, the user could habilitate the following options:

• Initialize the reconstruction with a random image common to all the chains:
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Figure 3.9: left: Best reconstructed image. center: Best-fit image squared visibilities. right: Best-fit image
closure phases.

squeeze example1.oifits -w 128 -s 0.4 -tv 10 -chains 50 -i random

• Initialize the reconstruction with a random image different for all the chains:

squeeze example1.oifits -w 128 -s 0.4 -tv 10 -chains 50 -i randomthr

• Initialize the reconstruction with a user-defined image initial_im.fits:

squeeze example1.oifits -w 128 -s 0.4 -tv 10 -chains 50 -i initial_im.fits

3.4.4. EXAMPLE 2
For this example, the second data set provided for the 2004 Beauty Contest edition is

used. Figure 3.10 displays the u − v coverage, as well as the squared visibilities and clo-

sure phases for this data set. According to Lawson et al. (2004), this data set consisted

of a central diffuse source together with a secondary compact source. The data used in

this example not only contains closure phases and squared visibilities, but also visibil-

ity amplitudes, phases and triple amplitudes. In this respect, SQUEEZE allows the user

to select which observables fit during the reconstruction. To disable observables from

the minimization process, the following options could be selected: -novis, -novisamp,
-novisphi, -not3, -not3amp, -not3phi and -nov2. The user should check the quality

of the observables to decide whether use all of them or not. For example, in this case,

performing the reconstruction only with closure phases and squared visibilities makes

difficult the convergence of SQUEEZE, and the minimum temperature reached is of ∼7.0

with a χ2 in the squared visibilities of ∼3700. The user can corroborate this, by running

the following command:
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Figure 3.10: left: u − v coverage. The colors indicate different baselines. center: Squared visibilities. right:
Closure phases

squeeze 2004dataset2.oifits -w 128 -s 0.4 -tv 100 -novisamp -novisphi -not3amp

In contrast with the previous attempt, using the visibility amplitude and closure phases

the algorithm converges reaching an annealing temperature of 1.0 and a χ2 of ∼3.6. The

user can check this reconstruction by running the following command:

squeeze 2004dataset2.oifits -w 128 -s 0.4 -tv 100 -nov2 -novisphi -not3amp

Figure 3.11 displays the reconstructed images with the previous two commands. Please

notice the clear difference in the recovered brightness distribution. The left panel dis-

plays the reconstruction that converged properly and the structure of the source (an ex-

tended elongated shape + a compact object) is revealed. The right panel displays the

non-converged reconstruction.

3.5. ADVANCED USAGE

3.5.1. POLYCHROMATIC RECONSTRUCTION

One of the main goals of the new generation of infrared interferometers is to recover

the morphological changes of the astrophysical objects across the bandpass of the ob-

servations. For example, this aspect is particularly important for MATISSE (Lopez et al.,

2008, 2009), which will have a bandpass as large as ∆λ∼5 µm in the N-band. SQUEEZE

allows to perform polychromatic reconstruction by including the differential phase in-

formation of the data. The initial setup required to perform this reconstruction is quite

similar to the ones used in the previous examples. Nevertheless, this time, the differen-

tial phases are included. SQUEEZE has an integrated a transpectral regularizer available
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Figure 3.11: left: Reconstructed image with visibility amplitudes and closure phases. right: Reconstructed
image with squared visibilities and closure phases

through the −t s option. Since closure phase is a shift-invariant observable, transpectral

regularization is required to ensure spectral continuity across the bandpass used for the

reconstructions. This is particularly important to avoid different positions of the recov-

ered object at each one of the frames in the reconstructed data cube.

3.5.2. THE OBJECT

Proto-planetary disks is one of the key science objectives for the second generation of

VLTI instruments. Therefore, the object selected to illustrate a polychromatic recon-

struction consisted of a simulated accretion disk as observed in the N-band (8-13 µm)

with the MATISSE instrument in low-resolution mode. The model includes a central star

(surrounded by a large amount of dust) and a disk containing one gap, supposed to be

carved by a forming planet (Gonzalez et al., 2015). The brightness distribution across

the disk is not uniform with a clear bright spot at a position angle of ∼220◦ East of North

and the disk shape is elongated in the East-West direction. The observational setup for

this data set includes three simulated nights using three different configurations of the

Auxiliary Telescopes. Figure 3.12 displays the simulated u − v coverage, as well as the

interferometric observables. Notice how the squared visibilities trace a resolved object

with an angular size of ∼100 mas. The simulated closure phases are considerably nois-

ier, which increases the difficulty of the reconstruction. The differential phases use the

AMBER convention in which the reference channel corresponds to an average of all the

channels except the working one. This means that the reference channel varies across

the bandpass. The data set used was part of the 2016 Beauty Contest (Sanchez-Bermudez

et al., 2016) and can be found here: www.opticalinterferometry.com

www.opticalinterferometry.com
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Figure 3.12: The upper-left panel shows to the simulated u−v coverage for the MATISSE data. The upper-right,
lower-left and lower-right panels display the simulated closure phases, squared visibilities and differential
phases respectively. Different colors correspond to different baselines or triangles.
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3.5.3. THE RECONSTRUCTION

To begin with this reconstruction, an initial brightness distribution of a Gaussian was

used. To include a pre-defined image, in SQUEEZE the user can use the -i option.

In this case, the data channel with the longest wavelength (from 12.8076 to 13.20 µm)

and higher signal to noise was used. For this purpose the -wavchan was enabled. With

this setup, a first monochromatic reconstruction was performed with the following com-

mand:

squeeze 2016dataset2.oifits -w 135 -s 3.0 -la 1000 -l0 1 -i initial.fits -novisamp -

not3amp -novisphi -v2s 2.0 -wavchan 0 1.26e-5 13.10e-6 -n 150 -chains 3

In this example, a Laplacian regularization µLap =1000 was used. Please notice that

the aforementioned value was obtained by using the L-curve described in Sec. 3.4.3. In

the command, we have also disabled the use of the visibility amplitudes (not included

in the data set), the triple amplitudes (also not included in the data) and the visibility

phases. To ensure convergence, the additional option -v2s was included. This option

multiply the errorbar of the squared visibilities by a factor of two. It is important to high-

light, that the user should decide whether this option is necessary for a given recon-

structed data set because it relaxes the convergence criteria of the algorithm. Finally,

three chains were created for the reconstruction. The Figure 3.13 displays the initial im-

age and the result of the monochromatic reconstruction.

Figure 3.13: left: Initial image used for the monochromatic reconstruction. right: Best monochromatic recon-
structed image. Notice how in the reconstructed image a rim with an asymmetric brightness distribution is
observed around a central source.

Once the monochromatic reconstruction was finished. The recovered image was

used as starting point to perform a full polychromatic reconstruction. The two regu-

larizers used in the monochromatic reconstruction were included with an additional

transpectral regularizer. To enable the reconstruction using all the channels in the data

set, the -wavauto was used. Contrary to the monochromatic reconstruction, here the
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differential phases were included. The complete command for the polychromatic re-

construction is the following:

squeeze 2016dataset2.oifits -w 135 -s 3.0 -la 1000 -l0 1 -ts 3 - fv 0 -i

initial_monochromatic.fits -novisamp -not3amp -novisphi -wavauto -diffvis -n 150

-chains 3

Figure 3.14 displays the recovered images channel by channel, as well as the images

of the model used to simulate the data. Notice how the asymmetry of the disk is recov-

ered, together with the changes in size and brightness of the central source. However,

the elongation of the disk and the internal gap were not recovered in the reconstruction.
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Figure 3.14: Fourteen reconstructed images across the N-band using the SQUEEZE polychromatic reconstruc-
tion. The respective channel is labeled in each frame. The model images (from which the observables were
obtained) are also displayed.



4
THE IMAGE RECONSTRUCTION

GRAPHICAL USER INTERFACE

4.1. INTRODUCTION

This section describes the graphical user interface that is the central part to operate im-

age reconstruction softwares.

4.1.1. ARCHITECTURE

It is fine by design to separate the graphical user interfaces from the processing. By this

way each blocks are specialized to its limited domain and work by cooperation. The

strong advantage to put clear interfaces between each of them help to exchange some

part or have choice to compare and run multiple algorithms on same input data and

parameters. We then decided to provide a common Graphical User Interface (GUI) that

can operates many softwares that respect the interface 1.

The execution architecture of the GUI can handle local executions or remote ones.

Remote execution is performed over a standardized execution framework (UWS 2) which

avoid installation of local software to the user. Softwares then are hosted on computing

servers. Tests have been performed but first version requires the user to install image

reconstruction software on his machine.

1https://github.com/emmt/OI-Imaging-JRA
2http://www.ivoa.net/documents/UWS/index.html
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4.2. INSTALLATION AND CONFIGURATION

4.2.1. REQUIREMENTS

The GUI is packaged as a JavaWebStart 3 application then requires a Java runtime envi-

ronment. The required command is javaws.

Java runs on every operating systems with a great compatibility and efficiency. Users

who don’t have java on their machine yet, just have to install the java package of their dis-

tribution or may also visit http://www.java.com. The website provides support in many

languages to install the runtime environment.

Image reconstruction softwares must be installed previously and present in the PATH

of the GUI. Look at Help Menu / Report Feedback to JMMC ... / Details / System Proper-

ties.

Enhancement are planned to help the GUI finding some softwares.

4.3. BASIC USAGE
The work-flow consists of selecting the input data (OIFITS), a starting image (FITS)

and the image reconstruction software with associated parameters settings. Then the

user presses the run button so the algorithm runs until reaching the stopping criterion

or maximum number of iterations. Complete runs end providing result data : image,

OIFITS and associated output parameters. An execution log is shown and may help the

user for any faulty run.

4.3.1. INPUT DATA

INTERFEROMETRIC DATA

The GUI load interferometric data through OIFITS files. The user can load files from its

local disk or may use SAMP protocol to load data from the OiDB portal 4. OIFITS V2 is

not yet supported by the first version of the GUI.

IMAGE DATA

Several fits images can be loaded and displayed by the GUI. The selection is performed

by the INIT_IMG combo box.

ALGORITHM SETTINGS

A first set of parameters are shown to the user. These parameters come from the interface

document.

4.3.2. OUTPUT RESULTS

3https://java.com/en/download/faq/java_webstart.xml
4http://oidb.jmmc.fr/search

https://java.com/en/download/faq/java_webstart.xml
http://oidb.jmmc.fr/search
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MODEL OF THE DATA

Result OIFITS have new column dedicated to model data. A plotting preset has been

implemented to simultaneously display the observed data points and modeled ones.

Future enhancement already are planned for the shared component developed by JMMC

so that the observed and modeled data are stacked on the same plot.

FINAL IMAGE

As input images, the result image is displayed automatically after each run. The user can

compare manually the various result by selecting result set in the dedicated list. Again,

some computation ad comparison function are expected in the future versions.

PARAMETERS

A summary of output parameters is display as a basic table. The input data also are

displayed to get memory of initial conditions.

EXECUTION LOG

The output of the spawn programs is collected and displayed to the user as free text.

4.4. APPLICATION MAINTENANCE

The current GUI has been based on the jMCS5 framework provided by JMMC for its soft-

wares. JMMC will provide support, maintain and develop new functions on this applica-

tion. Current and future version will be reachable at http://www.jmmc.fr/oimaging. Bug

reports, feature requests or documentation typo are submitted to the JMMC’s project

management system. Some issues already have been filed directly from the GUI at first

development phases.

5https://github.com/JMMC-OpenDev/jMCS

http://www.jmmc.fr/oimaging
https://github.com/JMMC-OpenDev/jMCS
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IMAGE RECONSTRUCTION WITH

BSMEM

5.1. INTRODUCTION
The BSMEM (BiSpectrum Maximum Entropy Method) software was first written in 1992 to

demonstrate image reconstruction from optical aperture synthesis data. It has been ex-

tensively enhanced and tested since then (Baron and Young, 2008). A modified version of

BSMEM has been developed as one of several alternative algorithms able to be controlled

by the “OImaging” Graphical User Interface presented in chapter 4. It is this new version

of BSMEM that is described here.

The BSMEM algorithm applies a fully Bayesian approach to the inverse problem of

finding the most probable image given the evidence, making use of the Maximum En-

tropy approach to maximize the posterior probability of an image. BSMEM is available

free-of-charge to the scientific community on submission of the academic license agree-

ment at:

http://www.mrao.cam.ac.uk/research/optical-interferometry/bsmem-software/

BSMEM uses a trust region method with non-linear conjugate gradient steps to mini-

mize the sum of the log(likelihood) (chi-squared) of the data given the image and a reg-

ularization term expressed as the Gull-Skilling entropy:

fprior(x) =∑
n

[
xn log(xn/x̄n)−xn + x̄n

]
(5.1)

with x̄ the default image; that is, the one which would be recovered in the absence of any

data. The likelihood term used by BSMEM assumes independent Gaussian noise statistics

for the amplitude and phase of the measured bispectrum. The optimization engine is
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MEMSYS which implements the strategy proposed by Skilling and Bryan (1984) and au-

tomatically finds the most likely value of the hyperparameter µ that weights fprior with

respect to fdata. Because it doesn’t attempt to convert the data into complex visibilities, a

strength of BSMEM is that it can handle any kind of data sparsity (such as missing closure

phases).

The default image (or model image) x̄ is usually chosen to be a Gaussian, a uniform

disk, or a delta-function centered in the field of view, which conveniently fixes the lo-

cation of the reconstructed object (the bispectra and power spectra being invariant to

translation). This type of default image also acts as a support constraint by penalizing

the presence of flux far from the center of the image. If a low-resolution image of the

target object is available, this can be used instead.

5.2. INSTALLATION AND CONFIGURATION
These instructions describe local installation of BSMEM on your computer. Installation

under Linux or Mac OS X is supported. OImaging can work with a local installation of

BSMEM or by running BSMEM on a remote server; if using the latter option local installation

is not needed.

First, follow the online instructions1 to submit a license agreement (free-of-charge

for academic use) for BSMEM and hence obtain the source code. You will receive the

source code as a gzipped tar file. Check the README.md in the tarball for more up-to-

date installation instructions.

BSMEM has successfully been built on Linux (Ubuntu 14.04, kernel 4.4.0 and CentOS

release 6.6, kernel 2.6.32) and OS X (10.9 Mavericks). Any recent Linux distribution or OS

X version should work. Building on Solaris is no longer supported.

5.2.1. REQUIREMENTS

The following libraries must be installed on your system:

1. PGPLOT 5.2 (http://www.astro.caltech.edu/~tjp/pgplot/): with at least XTERM,

PS, and XSERVE drivers activated in the drivers.list file. On Redhat/Fedora Linux

install the pgplot-devel package (from rpmfusion); on Debian/Ubuntu install the

pgplot5 package. If using MacPorts on OS X install the pgplot port.

2. CFITSIO 3.x (http://heasarc.gsfc.nasa.gov/fitsio/)

On Redhat/Fedora install the cfitsio-devel package; on Debian/Ubuntu install the

libcfitsio3-dev package. If using MacPorts install the cfitsio port.

3. FFTW 3.x (http://www.fftw.org/)

On Redhat/Fedora install the fftw-devel package; on Debian/Ubuntu install the

libfftw3-dev package. If using MacPorts install the fftw-3 port.

4. NFFT 3.x (http://www-user.tu-chemnitz.de/~potts/nfft/)

Download the source code and build/install using the standard sequence of com-

1http://www.mrao.cam.ac.uk/research/optical-interferometry/bsmem-software/

http://www.astro.caltech.edu/~tjp/pgplot/
http://heasarc.gsfc.nasa.gov/fitsio/
http://www.fftw.org/
http://www-user.tu-chemnitz.de/~potts/nfft/
http://www.mrao.cam.ac.uk/research/optical-interferometry/bsmem-software/
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mands: ./configure, make, make install. Alternatively, if using Debian Linux,

you can install the libnfft3-dev package.

5. GLib 2.16 or later (https://developer.gnome.org/glib/)

On Redhat/Fedora install the glib2-devel package; on Debian/Ubuntu install the

libglib2.0-dev package. If using MacPorts install the glib2 port.

6. OIFITSlib 2.2.0 or later (https://github.com/jsy1001/oifitslib/)

7. CMake 2.8.6 or later (https://cmake.org/)

You will also require both C and Fortran 77 compilers to build BSMEM. BSMEM has been

built successfully using gcc, together with g77 or gfortran.

BUILDING PGPLOT FROM SOURCE

If you need to build PGPLOT from source:

Ensure you have an X11 library installed (e.g. libX11-devel and libXt-devel packages

on Redhat/Fedora, libX11-dev and libxt-dev on Debian/Ubuntu). Create the makefile

using makemake (see install-unix.txt), then compile. Check that the C wrapper cpg-

plot is installed. Finally, remember to set up your PGPLOT_DIR environment variable to

correctly point to the pgxwin_server, rgb.txt, and grfont.dat files.

5.2.2. RECOMMENDED COMPILERS

On OS X, we recommend the use of gcc 4.5 from MacPorts. Install it and build BSMEM as

follows:

• Install MacPorts (https://www.macports.org/)

• Use MacPorts to install gcc45 and gcc_select

• Select this gcc and gfortran:

sudo port select --set gcc mp-gcc45

• Check that gcc --version and gfortran --version show version 4.5.4

• Make sure that BSMEM’s dependencies are installed (see above)

• Set PKG_CONFIG_PATH to include locations of .pc files for libraries not installed

through MacPorts, in addition to the MacPorts .pc files directory (normally /op-

t/local/lib/pkgconfig)

• Build BSMEM using CMake as outlined in the next section, but invoke cmake as

cmake -DCMAKE_C_COMPILER=gcc ..

5.2.3. BUILDING BSMEM
CMake is now used for building BSMEM. For those not familiar with CMake, instructions

can be found at https://cmake.org/runningcmake/. If you are using a Unix-like op-

erating system the following commands should build the software:

cd build

cmake ..

https://developer.gnome.org/glib/
https://github.com/jsy1001/oifitslib/
https://cmake.org/
https://www.macports.org/
https://cmake.org/runningcmake/
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make

Finally, use sudo make install to install the bsmem and bsmem-ci executables.

Note that the pkg-config utility is used to locate the GLib and OIFITSLib libraries that

bsmem depends on. The search path for pkg-config must be configured to include the

locations of the .pc files for those libraries, for example by setting the PKG_CONFIG_PATH
environment variable.

5.3. BASIC USAGE
The basic workflow consists of specifying the input data, a starting image for the opti-

mization (this typically also serves as the default image for the entropy function), and

the algorithm settings, then starting BSMEM. The algorithm runs iteratively, until either

the stopping criterion has been satisfied, or the specified maximum number of itera-

tions has been reached.

5.3.1. DATA SELECTION

The interferometric data are specified as an OIFITS filename plus data selection param-

eters that define the subset of the file contents to use. An overview of the data selection

process is given in chapter 4. BSMEM ignores the USE_VIS parameter since the current

version cannot use complex visibility data. The non-standard UV_MAX parameter allows

a maximum radius in the u − v plane to be specified (in waves).

The reconstructed image is assumed to be wavelength-independent, so selecting an

appropriate wavelength range from spectrally-dispersed data is a trade-off between min-

imizing the wavelength-variation in the selected data and maximizing the u−v coverage.

If in doubt, select a single wavelength channel.

5.3.2. INITIAL/DEFAULT IMAGE

If little is known about the object to be reconstructed, or an uninformative prior is de-

sired, a good choice for the default image is usually a circular Gaussian centered in the

field of view. With this kind of prior and adequate u−v sampling, getting BSMEM to work

usually boils down to choosing the pixel scale, image width, and prior width appropri-

ately. These choices are explored in the examples in section 5.3.7, section 5.3.8 and sec-

tion 5.4.1.

5.3.3. TOTAL FLUX CONSTRAINT

The image supplied to BSMEM specifies the relative pixel values; the total flux of the initial

image is specified by the (currently non-standard) INITFLUX parameter. The initial flux

should be set to a low value (e.g. 0.01). As BSMEM iterates, the flux in the image model is

increased. The flux should be close to unity at convergence. In case there are no mea-

sured data at low spatial frequencies, this is enforced by adding an artificial V 2 = 1 data

point at zero spatial frequency. The FLUXERR parameter specifies the error bar on this
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data point and thus the strength of the “unit flux” constraint. Specifying a FLUXERR value

that is too small will significantly delay convergence.

5.3.4. STOPPING CRITERION

BSMEM is able to estimate the value of the hyperparameterµ from the data. The AUTO_WGT
parameter enables or disables this behaviour. If enabled, BSMEM automatically adjusts

RGL_WGT to obtain a reduced χ2 close to unity (this is the non-Bayesian “historic chi-

squared = N method”, which was found to be the most robust of the methods supported

by MEMSYS).

If AUTO_WGT is disabled, then the behaviour of BSMEM is similar to MiRA. The user

must choose an appropriate regularization weight for each imaging problem.

AUTO_RGL should be disabled if there is significant intrinsic variation in the selected

data, either with wavelength or time (for time-variable targets), as “good” solutions for

such cases should have χ2 > 1. Note that it is not currently possible to filter the OIFITS
data by time within OImaging.

5.3.5. OTHER SETTINGS

The standard algorithm settings are described in chapter 4. BSMEM accepts the following

non-standard settings (at the time of writing, only FLUXERR can be set in OImaging):

FLUXERR Error on synthetic zero-baseline squared visibility, see section 5.3.3

INITFLUX Initial image flux, see section 5.3.3

V2A Squared visibility error factor

T3AMPA Triple amplitude error factor

T3PHIA Closure phase error factor

V2B Squared visibility error offset

T3AMPB Triple amplitude error offset

T3PHIB Closure phase error offset

The last six settings can be used to adjust the error bars for the observed data, if you

suspect they are systematically incorrect.

5.3.6. OUTPUT PARAMETERS

The following values can be displayed when BSMEM has finished:

NITER The total number of iterations done in the current program run.

CHISQ The reduced χ2 at the end of the run.
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ENTROPY The entropy value at the end of the run.

FLUX The total image flux at the end of the run.

RGL_WGT The weight of the regularization (determined automatically if the AUTO_WGT
setting is true).

5.3.7. EXAMPLE 1
For the first example, the model of LkHa 101 used for the 2004 Beauty Contest (Lawson

et al., 2004) has been selected (see Chapter 3). The following steps are needed to recon-

struct an image from this data set, using BSMEM via the OImaging GUI:

1. Prepare an initial image in FITS format (currently this must be done outside of

OImaging). The initial image defines the pixel scale and field of view of the recon-

structed image.

2. Load the OIFITS file into OImaging. By default, all of the data are used.

3. Load the initial image into OImaging.

4. Adjust the algorithm settings as necessary. The default settings will work for this

data set.

5. Click the “Run” button to launch BSMEM. When BSMEM has finished, the recon-

structed image will appear in the “Image” tab of the “Data Visualisation” panel

(see fig. 5.1).

6. Examine the “Output parameters” and “Execution log” tabs of the “Data Visualisa-

tion” panel to check that the algorithm converged successfully.

7. The “Save image” button may be used to save the reconstructed image.

The initial image used to obtain the reconstruction in fig. 5.1 was a circular Gaussian

with a FWHM of 12 mas, centered in the FOV. The same image was used as the default

image for the regularization term (this is the default behavior). The image scale was

chosen as 0.25 milliarcseconds per pixel. This is equivalent to 6.8 pixels per fastest fringe

λmin/Bmax (BSMEM requires a minimum of 6).

When BSMEM starts, the image model has a low flux (given by INITFLUX, default 0.01).

As BSMEM iterates, the flux in the image model is increased. fig. 5.2 shows the squared

visibilities corresponding to the image model after 8 iterations, when the model flux is

0.71. At convergence after 29 iterations, the model flux is 1.004 giving a good fit to the

shortest-baseline V 2 data.

The FLUXERR parameter specifies the error bar on a synthetic V 2 = 1 data point which

helps enforce normalization of the image to unit flux. Reducing this value from the de-

fault 0.1 causes BSMEM to add more flux to the image in later iterations. If there are few

real data points at low spatial frequencies, there is little information on where to put this

extra flux, leading to spurious results. Hence FLUXERR should be varied with caution.

Use of a centrally-peaked default image is recommended, as this constrains the lo-

cation of the reconstructed object (squared visibility and triple product data being in-

variant to translation). In this example, a circular Gaussian of FWHM 12 mas was cho-
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Figure 5.1: Screenshot of OImaging showing input parameters on the left and the final reconstructed image on
the right. Note that the color scale is different from fig. 3.1. The algorithm settings are all at their default values
except for FLUXERR, which was changed from 0.1 to 0.01.
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Figure 5.2: Plot of the input squared visibility data (top) and BSMEM’s model of the data (bottom) after 8 itera-
tions.

sen. Similar results are obtained with a Gaussian FWHM between 9 and 16 mas. Using a

smaller width allows the reconstruction to converge faster, but increases the risk of miss-

ing real flux located far from the FOV center. The suggested approach is to start with a

broad default image, infer the true size of the object from the result, then repeat the re-

construction using an appropriately-sized default image. Alternatively, the object size

could be determined by fitting a simple model to the short baseline visibilities.

5.3.8. EXAMPLE 2
The second example data set is a simulated observation of a proto-planetary disk by

VLTI/MATISSE. The synthetic data comprise observations in 14 spectral channels across

the N-band (8–13µm), using three configurations of the Auxiliary Telescopes. The data

set used was part of the 2016 Beauty Contest (Sanchez-Bermudez et al., 2016) and can

be found here: www.opticalinterferometry.com
The model includes a dust-enshrouded central star and a disk containing one gap,

supposedly carved by a forming planet (Gonzalez et al., 2015). Further details, including

plots of the simulated interferometric data, are given in Chapter 3.

GRAY LIMITATIONS

This example illustrates several issues associated with spectrally-dispersed data. Most

importantly, BSMEM can only reconstruct a gray image. That is, BSMEM assumes all of the

www.opticalinterferometry.com
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observed data are consistent with a single truth image, and attempts to find the “sim-

plest” image that is statistically compatible with the data. In general, the user must

choose a subset of the available channels in order to optimize the u − v coverage while

minimizing the intrinsic variation between channels that BSMEM cannot solve for. An ob-

vious consequence of the gray image limitation is that differential phase data cannot be

used.

The u − v coverage of this example data set is adequate to reconstruct each channel

independently, given a suitable initial/default image. However, BSMEM’s estimates of the

regularization weight (hyperparameter) are not very good for this data set, as evidenced

by the surprisingly large and rapid variation in the estimated weight as a function of

wavelength. The same array configurations were used to simulate all channels, and the

integrated spectrum of the object varies smoothly with wavelength, so a priori signifi-

cant variation would not be expected.

A suitable work-around is to set a fixed regularization weight for all spectral channels.

As the weight is no longer automatically chosen to give unit χ2, its important to check

the final χ2 value is acceptable.

In OImaging, each channel must be selected in turn, and a separate reconstruction

carried out. Figure 5.3 shows the settings and result for the longest-wavelength channel.

BSMEM achieves convergence for all 14 channels using a regularization weight of 800,

yielding χ2 values between 0.9 and 1.3.

INITIAL IMAGE

The initial/default image (fig. 5.4) is the superposition of two circular Gaussian compo-

nents centered in the FOV: a 90 mas FWHM component containing 99% of the flux and

a 5 mas FWHM component containing 1% of the flux. The larger component provides a

support constraint for the disk emission, and the smaller component fixes the location

of the central star in the middle of the reconstructed image. Successful reconstructions

can be obtained without the second image component, but the object position varies

significantly with wavelength. The image scale is 2 mas/pixel.

5.4. ADVANCED USAGE
Sometimes with more challenging data sets, BSMEM won’t converge to a good solution

when an uninformative initial/default image is used. In such cases, a two-step proce-

dure can often be used to reconstruct an image successfully. The following example il-

lustrates such a method.

5.4.1. EXAMPLE 3
In this section an example two-step procedure is presented, using simulated data from

the 2010 interferometric imaging beauty contest (Malbet et al., 2010).

The contest data simulates an observation of a red supergiant star with VLTI/AMBER.

To add to the challenge, an unresolved companion star, located 8 stellar radii from the



5

46 5. IMAGE RECONSTRUCTION WITH BSMEM

Figure 5.3: Screenshot of OImaging showing input parameters on the left and the final reconstructed image on
the right. The longest-wavelength channel has been selected by increasing WAVE_MIN to 12.8µm. Automatic
calculation of RGL_WGT has been disabled for the reason explained in the text.
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Figure 5.4: The initial/default image for example 2, comprising a 5 mas FWHM Gaussian superimposed on a
90 mas FWHM Gaussian. See text for explanation.

primary, was incorporated into the truth image. Two observations of the target object

were simulated: a H-band medium spectral resolution (MRH) observation at resolution

R = 1500 (512 channels), and a simultaneous H- and K-band low spectral resolution ob-

servation (LRHK) at R = 35 (20 channels).

The contest invited two kinds of submissions:

1. Three “gray” images derived from different subsets of the simulated spectral chan-

nels; and

2. A “spectral” image derived from the MRH data, allowing channel-to-channel dif-

ferences.

The contest data files can be downloaded from the JMMC archive: http://jmmc.
fr/oidata/#cat_BeautyContest

BSMEM CONTEST ENTRY

It was found that BSMEM was very slow (runtimes upwards of 24 hours on a standard

PC) to converge to a well-fitting (reduced χ2 < 5) solution when given data from mul-

tiple spectral channels and an uninformative prior – probably in large part due to the

wavelength-dependence of the object.

Thus a two-step approach was used for the BSMEM contest entry – first finding an im-

age whose low spatial frequencies were compatible with the data, and then reconstruct-

http://jmmc.fr/oidata/#cat_BeautyContest
http://jmmc.fr/oidata/#cat_BeautyContest
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ing each spectral channel separately using this as the default image. The reconstructed

images from each spectral channel were then averaged to generate the three gray images

specified by the contest organizers.

In particular, it was found that BSMEM did eventually converge using low-spatial-

frequency data (baselines up to 60 m) from the first 8 spectral channels of the low-spectral-

resolution data set. The resulting image (fig. 5.5) was convolved with a Gaussian with

FWHM equal to the finest fringe spacing and thresholded to remove features judged to

be noise. This spatially-filtered image was used as the initial/default image for the sub-

sequent reconstructions of individual spectral channels, which typically converged after

70 to 250 iterations (of order 30 minutes on a standard PC). To generate the gray sub-

missions, the spectral channels were averaged with uniform weighting, and pixels below

a specified threshold in the average image were set to zero. The threshold value was

chosen to remove most of the obvious circumstellar artefacts, each of which typically

appeared in the one spectral channel only.

When following a two-step process, a pixel scale suitable for the full data set must

be used for both steps (the initial image for step 2, derived from the result of step 1,

defines the pixel scale for the final reconstruction). A scale of 0.4 mas per pixel gives 6.01

samples per fastest fringe at 1.521µm and is therefore suitable for this example. With

this sampling, a 512×512 pixel image is needed to reconstruct both stars.

Since the second-step reconstructions were performed for each spectral channel sep-

arately, it was necessary to write a custom script to run BSMEM many times, selecting a

different subset of the data for each run.

USING OIMAGING

This section illustrates the use of OImaging to perform a similar two-step procedure for

a single channel of the 2010 contest LRHK data (Mystery-Low_HK.oifits).

For the first step, the high spatial frequencies must be removed from the data. This

can be done using the oifits-filter program that comes with OIFITSlib. Alterna-

tively, a future OImaging release should allow setting of UV_MAX to achieve the same

result. A 60 mas FWHM circular Gaussian is used as the default image. For this data

set, MAXITER must be set to a large number as several hundred iterations are needed to

converge. The resulting image is shown in fig. 5.5.

The first reconstructed image is exported and processed outside of OImaging. The

image is convolved with a Gaussian function, then all pixels below a specified threshold

are set to zero. The FWHM of the blurring function is the finest fringe spacing in the

filtered data, in this case 5.6 mas. This has the effect of smoothing out all of the stellar

surface structure. The threshold value (0.003) is chosen to remove all of the noise in the

empty regions of the field.

The blurred and thresholded image is used as the model image for a second BSMEM
run on the full-resolution data set. For this second step, each spectral channel must be

processed separately. Figure 5.6 shows the result for the first channel.
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Figure 5.5: Image reconstructed from a low-spatial-frequency subset (B < 60 m) of the LRH data, using a 60 mas
Gaussian initial/default image. The companion star is visible towards the top center of the field.

Figure 5.6: Screenshot of OImaging showing input parameters on the left and the reconstructed image (after
72 iterations) on the right. The shortest-wavelength channel has been selected. The image has been zoomed
to show the supergiant star surface.
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IMAGE RECONSTRUCTION WITH

MiRA

6.1. INTRODUCTION

MiRA, the Multi-aperture Image Reconstruction Algorithm, was developed by Éric Thié-

baut,1 aiming at a versatile package for interferometric image reconstruction, with no

restriction on the type of data or regularisation that can be used. The rational is de-

scribed in detail by Thiébaut (2008, 2013).

MiRA follows a general principle for image reconstruction: it searches for the image

x+ (a grid of square pixels) which minimizes a two-term penalty function with respect to

the parameters of the image:

x+ = argmin
x∈Ω

{
f (x) = fdata(x|d)+µ fprior(x)

}
. (6.1)

The image parameters (e.g., the pixel values) are constrained to the set of possible images

Ω that obey to restrictive conditions, such as normalisation (the sum of the pixels is equal

to 1) and positiveness (all pixel intensities are non-negative).

The penalty criterion connects the data and the prior by means of fdata and fprior,

usually known respectively as the likelihood and regularisation terms. While the former

measures the discrepancy between the actual data d – e.g., squared visibilities V 2, clo-

sure phases φc, visibility amplitudes V and baseline phases φ – and their model given

the image x, the latter is a penalty which enforces additional priors and is required to

avoid artefacts. The regularisation term is mandatory because the data alone cannot

unambiguously yield an unique image. The level of regularisation µ is a positive hyper-

parameter, adjusted to set the relative weight of the a priori information.

1Email: thiebaut@univ-lyon1.fr
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The minimisation of eq. (6.1) is done by a non-linear optimisation algorithm. Since

MiRA does not perform a global optimisation, a successful restoration when using clo-

sure phases (a non-convex problem) relies on the initial image.

MiRA does not try to recover the phases directly, being thus able to handle any type

of observable, and it presents no restrictions on the kind of regularisation to be applied

to the reconstruction process.

6.2. INSTALLATION AND CONFIGURATION
In order to use MiRA, it is necessary to install Yorick (version 2.1 or superior), OptimPack
(from version 1.2 on) and Yeti (version ≥ 6.2.0). It is also advisable to install YNFFT, a

Yorick plug-in for the Nonequispaced Fast Fourier Transform, for faster operations. The

aforementioned packages can be retrieved from the following links:

• Yorick: http://dhmunro.github.io/yorick-doc/
• OptimPack: https://github.com/emmt/OptimPack
• Yeti: https://github.com/emmt/Yeti
• YNFFT: https://github.com/emmt/ynfft

OptimPack, Yeti and YNFFT can be downloaded either as Git repositories or as archive

files. The same principle applies to the MiRA software.

6.2.1. Yorick
INSTALLING FROM A PACKAGE MANAGEMENT PROGRAMME

On Ubuntu based distributions, Yorick can be installed using the apt terminal com-

mand, or by means of the synaptic package manager. In case of the former, it is suffi-

cient to write

sudo apt install yorick

For recent distributions, the previous command will also automatically install rlwrap,

which is very handy to recall previous commands inside Yorick environment.

COMPILING AND INSTALLING FROM SOURCE

In case you prefer to compile Yorick from scratch, then execute the following steps:2

• Unzip/untar the latest version of Yorick. Example:

unzip dhmunro-yorick-y_2_2_04-6-gbc24b71.zip

or

tar xzvf dhmunro-yorick-y_2_2_04-6-gbc24b71.tar.gz

2This procedure was tested in Linux Ubuntu MATE 16.04, Mint 17.3 Rosa Mate and several Manjaro
and xUbuntu (Ubuntu, Kubuntu, Ubuntu Gnome) distributions over the years, both 32 and 64 bits.

http://dhmunro.github.io/yorick-doc/
https://github.com/emmt/OptimPack
https://github.com/emmt/Yeti
https://github.com/emmt/ynfft
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• Go to the unpacked directory and type:

make config

make

make check

make install

This will create a subdirectory relocate/ in the source tree. The Yorick exe-

cutable is relocate/bin/yorick. You can move the relocate/ directory wher-

ever you want (the name “relocate” is not important), but any changes in the rel-

ative locations of the files therein will prevent Yorick from starting correctly. For

example:

mv relocate/ /opt/yorick_2.2.04-6__64b

You can add the path where the Yorick executable is to your $PATH variable, or

create a softlink to the Yorick executable from wherever you like, or execute Yorick
from a shell script outside its relocate/ directory.

USING A RELOCATABLE VERSION

In case you want to use a previously compiled version of Yorick, just uncompress the

relocatable/ directory to a desired folder (e.g., /opt) and add [Yorick-relocatable
-folder ]/bin/yorick to your $PATH, or create a soft link to it.

6.2.2. OptimPack, Yeti AND MiRA
In order to install any of these packages, just follow the instructions on the correspond-

ing GitHub repositories (see urls in page 52).

6.3. BASIC USAGE
After choosing the regularisation, MiRA needs the following inputs:

(i) The data, in the OIFITS standard format, either table versions 1 (Pauls et al., 2005)

or 2 (Duvert et al., 2015).

(ii) An optional estimate for the image – important when only power-spectra and bi-

spectra are present.

(iii) The size of the pixel, δθ.

(iv) The hyper-parameter µ.

(v) The maximum number of iterations (Gomes et al., 2017).

The initial image is not important if the data is composed of complex visibilities, with

both visibility amplitudes and baseline phases, as the problem becomes complex and

MiRA yields an unique solution. However, complex visibilities are still scarce and in face

of the more common power-spectra and closure phases, the initial image plays an im-

portant role in the success of the reconstruction process. The choice of the lateral size
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Ω= N ·δθ of the square image of N ×N pixels is fundamental because it provides a strict

constraint on the support of the object and strongly affects the restoration of the image

(Gomes et al., 2017). On the one hand, since we are mapping the interferometric data

into a discrete grid of pixels, the dimensions of the pixel grid need to be chosen large

enough in order to sample all the measured spatial frequencies. On the other hand, N

cannot be too large, so as to make the computation practical. According to the Nyquist-

Shannon criterion, the pixel size shall sample the maximum angular resolution, but it

also shall account for some level of super-resolution introduced by the image recon-

struction algorithm. As a rule of thumb, δθ shall be of the order of

δθ.
λ

4Bmax
, (6.2)

where Bmax is the maximum projected baseline length.

MiRA can be used both in the command line interface or inside the Yorick environ-

ment. The following instructions are highly inspired in the documentation available in

the MiRA package (for more details, consult the corresponding GitHub repository, see

page 52).

6.3.1. USING MiRA FROM THE COMMAND LINE

The general syntax for using MiRA from the command line interface is

mira [OPTIONS] INPUT [...] OUTPUT

where [OPTIONS] are optional settings, INPUT [...] are any number of OIFITS input

data files and OUTPUT is the name of the output FITS file to save the resulting image.

Option -help can be used for a short description of all options.

DATA SELECTION

MiRA reconstructs a grey image from the interferometric data. Although MiRA cannot

currently handle with multi-wavelength data as a whole, the user can select one wave-

length included in a set of observations by means of one or a combination of keywords.

For example, the wavelengths of the selected data can be specified as the end points of

the spectral range:

... -wavemin=MINVAL -wavemax=MAXVAL

or as the central wavelength and bandwidth:

... -effwave=CENTER -effband=WIDTH

The arguments of these options have units of length. For instance,

... -wavemin=1.6µm -wavemax=1.8microns
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is the same as

... -effwave=1700nm -effband=200nm

If the input data files contain observations for more than one object, the target to con-

sider can be specified as

... -target=NAME

IMAGE PARAMETERS

An initial image for the reconstruction can be provided as

... -initial=FILENAME

where FILENAME is the name of the FITS file with the image to start with.

If no initial image is provided, the reconstruction starts with a random image and

option -seed=NUMBER can be used to seed the random generator.

By default, the reconstructed image will have the same pixel size and dimensions as

the initial image if provided. Otherwise, the pixel size can be specified with the option

-pixelsize=PIXSIZ , and the image dimensions can be chosen with -dim=NUMBER or

-fov=ANGLE . PIXSIZ and ANGLE are in angular units, and NUMBER is the number of

pixels in each lateral dimension of the image (assumed a square image). For instance,

... -pixelsize=0.25mas -fov=100mas

or

... -pixelsize=250e-6arcsec -dim=400

both yield a 400×400 image with a pixel size of 0.25 mas.

6.3.2. FOURIER TRANSFORM

The nonequispaced Fourier transform of the pixels can be computed by different meth-

ods: -xform=exact uses an exact transform, -xform=nfft uses a precise approxima-

tion by the NFFT algorithm, while -xform=fft uses a built-in algorithm which is less

precise. The exact transform can be very slow if the image is large and/or if there are

many data. The two others exploit an FFT algorithm and are faster. If you have installed

Yorick NFFT plug-in, -xform=nfft is certainly the method of choice.
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IMAGE CONSTRAINTS

The total flux of the sought image, and the lower and upper bounds for pixel values can

be specified with the options -normalization=SUM , -min=LOWER and -max=UPPER re-

spectively. For instance,

... -normalization=1 -min=0.0

is a must for processing OIFITS data.

REGULARISATION

Because the algorithm has to deal with sparse interferometric data, the user has also

to indicate which regularisation must be applied to interpolate missing data. The reg-

ularisation is the kind of prior imposed to the reconstructed image. MiRA accepts any

regularisation, but it has several already implemented in the code (see, for e.g., Thiébaut

2013, and rgl.i, inside MiRA folder, for details). For all implemented regularisations, the

relative strength of the prior (compared to the data) is specified with the option -mu=µ,

where µÊ 0.

Of the available regularisations, the following are the most relevant:

• Edge-preserving smoothness, which is selected with the options

-regul=hyperbolic -mu=µ -tau=τ -eta=η

where τ is the edge threshold and η the scale of the finite differences to estimate

the local gradient of the image. Distinctive scales can be set for different dimen-

sions by providing a list of values to -eta, e.g., -eta=1,1,0.3. By default, -eta=1.

Using a very small edge threshold, compared to the norm of the local gradients,

mimics the effects of total variation (TV) regularisations. Conversely, using a very

small edge threshold yields a regularisation comparable to quadratic smoothness.

• Quadratic compactness, which is selected with the options

-regul=compactness -mu=µ -gamma=γ

where γ is the full width at half maximum (FWHM) of the prior distribution of

light. This parameter has angular units. For instance, -gamma=15mas.

CAVEATS

• All units are in SI (i.e., angles are in radians, wavelengths in meters, etc.). A very

common error in parameter settings is to use completely out of range values be-

cause you assume the wrong units. To make things a easier, some constants are

pre-defined by MiRA package, and you can use, for instance, 5*MIRA_MICRON (in-

stead of 5×10−6 m), or 3*MIRA_MILLIARCSECOND (instead of 1.454 44×10−8 rad).
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• Positivity is a must, you cannot expect a good image reconstruction (at least with

any practical uv-coverage) without option xmin=0 in mira_solve. If you use cer-

tain regularisations such as entropy, you must specify a strictly positive value for

xmin (choose a very small value, for instance: 1e-50*nrm/npix where nrm is the

normalisation level and npix the total number of pixels).

• Likewise, normalization=1 must not be omitted if your data set obeys OIFITS

standard (i.e., visibilities are normalised) and has no explicit measurement at fre-

quency (0,0).

• The cost function is highly non-quadratic and may cause difficulties for OptimPack
to converge. To overcome this, it is sometimes very effective to simply restart

mira_solve with an initial image provided by a previous reconstruction (possi-

bly after re-centring by mira_recenter). For instance,

img1 = mira_solve(db, img0, maxeval=500, verb=1, xmin=0.0,

normalization=1, regul=rgl, mu=1e6);

img2 = mira_recenter(img1);

img2 = mira_solve(db, img2, maxeval=500, verb=1, xmin=0.0,

normalization=1, regul=rgl, mu=1e6);

img2 = mira_recenter(img2);

img2 = mira_solve(db, img2, maxeval=500, verb=1, xmin=0.0,

normalization=1, regul=rgl, mu=1e6);

...

• It is usually better to work with a purposely too high regularisation level and then

lower the value of mu as the image reconstruction converges.

6.3.3. USING MiRA INSIDE Yorick INTERPRETER

The process is usually initiated with the command mira_new, such as in

db= mira_new("data.oifits");

A wavelength included in a set of observations can be selected by means of the key-

word eff_wave . Example:

db= mira_new("data.oifits", eff_wave= 1.617e-6);

The image will be restored using data with wavelengths in the range eff_wave± 0.5×
eff_band (eff_band defaults to 0.1µm if not input). If eff_wave is not specified, MiRA
uses the average wavelength computed from the first block of data.

Then, MiRA has to be set-up. The procedure amounts to indicate the dimensions of

the restored image, the pixel size and the type of linear transformation for the extrapola-

tion of the observables:

mira_config, db, dim= 200, pixelsize= 0.15*MIRA_MILLIARCSECOND, xform= "exact";
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The keyword dim , the number of pixels along the width/height of the restored image,

must be indicated in pixels. Alternatively, you can introduce the size of the correspond-

ing FOV, in radians, via the keyword fov . MiRA includes several multiples and submul-

tiples of angular units, such as MIRA_MILLIARCSECOND, that can be handy when indi-

cating too small or too large values. The xform keyword can assume the options exact
(exact Fourier transformsm, the default), fft (Fast Fourier transforms) or nfft (Noneq-

uispaced Fast Fourier Transforms).

The regularisation can be indicated with the rgl_new command. For example,

rgl= rgl_new("compactness");

6.3.4. EXAMPLES

For the following examples, which illustrate some applications of the MiRA software, it is

assumed that all necessary packages are properly installed (see section 6.2.2, page 53).

EXAMPLE 1 (INSIDE Yorick INTERPRETER)

Launch Yorick and load MiRA (this shall automatically load Yeti plug-in):

include, "mira.i";

Load the OIFITS data file (db will be our MiRA instance for this data file):

db = mira_new("data1.oifits");

If there are several spectral channels in the data file, you must choose one with keyword

eff_wave or choose a spectral range with keywords eff_wave and eff_band , as de-

scribed before.

Configure the data instance for image reconstruction parameters:

mira_config, db, dim=100, pixelsize=0.5*MIRA_MILLIARCSECOND, xform="exact";

Choose a suitable regularisation method:

rgl = rgl_new("smoothness");

Attempt an image reconstruction (from scratch):

dim = mira_get_dim(db);

img0 = array(double, dim, dim);

img0(dim/2, dim/2) = 1.0;

img1 = mira_solve(db, img0, maxeval=500, verb=10, xmin=0.0, normalization=1,

regul=rgl, mu=1e6);
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Continue the reconstruction with a re-centred image:

img1 = mira_solve(db, mira_recenter(img1), maxeval=500, verb=10, xmin=0.0,

normalization=1, regul=rgl, mu=1e6);

img1 = mira_solve(db, mira_recenter(img1), maxeval=500, verb=10, xmin=0.0,

normalization=1, regul=rgl, mu=1e6);

img1 = mira_solve(db, mira_recenter(img1), maxeval=500, verb=10, xmin=0.0,

normalization=1, regul=rgl, mu=1e6);

The resultant image is illustrated in fig. 6.1.

Figure 6.1: Restored image obtained by MiRA using “smooth” support, lateral width of 100 pixels, and a pixel
size of 0.5 mas.

Extract the central part of the image and restart the reconstruction with a higher res-

olution image and a smaller field of view:

cut = (dim + 2)/4;

scale = 4.0;

new_img1 = mira_rescale(img1(1+cut:-cut, 1+cut:-cut), scale=scale);

new_dim = dimsof(new_img1)(2);

new_pixelsize = mira_get_pixelsize(db)/scale;

mira_config, db, dim=new_dim, pixelsize=new_pixelsize;

new_img1 = mira_solve(db, new_img1, maxeval=500, verb=10, xmin=0.0,

normalization=1, regul=rgl, mu=1e6);

new_img1 = mira_solve(db, mira_recenter(new_img1), maxeval=500, verb=10, xmin

=0.0, normalization=1, regul=rgl, mu=1e7);

new_img1 = mira_solve(db, mira_recenter(new_img1), maxeval=500, verb=10, xmin

=0.0, normalization=1, regul=rgl, mu=1e8);

new_img1 = mira_solve(db, mira_recenter(new_img1), maxeval=500, verb=10, xmin

=0.0, normalization=1, regul=rgl, mu=1e9);
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new_img1 = mira_solve(db, mira_recenter(new_img1), maxeval=500, verb=10, xmin

=0.0, normalization=1, regul=rgl, mu=1e10);

Figure 6.2 illustrates the resultant image.

Figure 6.2: Restored image obtained by MiRA using “smooth” support, lateral width of 200 pixels, and a pixel
size of 0.125 mas.

Choose a `2 −`1 smoothness:

rgl = rgl_new("xsmooth", "cost","cost_l2l1", "threshold",2e-5, "dimlist",dimsof

(new_img1));

mira_config, db, dim=256, pixelsize=0.1*MIRA_MILLIARCSECOND, xform="fft";

dim = mira_get_dim(db);

r = abs(mira_get_x(db), mira_get_x(db)(-,));

prior = 1.0/(1.0 + (2.0*r/(5.0*MIRA_MILLIARCSECOND))^2);

prior *= 1.0/sum(prior);

rgl_config, (rgl = rgl_new("quadratic")), "W", linop_new("diagonal",

1.0/prior);

img0 = (prior == max(prior)); img0 *= 1.0/sum(img0);

img1 = mira_solve(db, img0, maxeval=500, verb=1, xmin=0.0, normalization=1,

regul=rgl, mu=1e4);

img1 = mira_solve(db, img1, maxeval=500, verb=1, xmin=0.0, normalization=1,

regul=rgl, mu=1e4);

img2 = mira_solve(db, img1, maxeval=500, verb=1, xmin=0.0, normalization=1,

regul=rgl, mu=5e3);

img2 = mira_solve(db, img2, maxeval=500, verb=1, xmin=0.0, normalization=1,

regul=rgl, mu=5e3);

img3 = mira_solve(db, img2, maxeval=500, verb=1, xmin=0.0, normalization=1,

regul=rgl, mu=2e3);

img3 = mira_solve(db, img3, maxeval=500, verb=1, xmin=0.0, normalization=1,

regul=rgl, mu=2e3);
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img4 = mira_solve(db, img3, maxeval=500, verb=1, xmin=0.0, normalization=1,

regul=rgl, mu=1e3);

img4 = mira_solve(db, img4, maxeval=500, verb=1, xmin=0.0, normalization=1,

regul=rgl, mu=1e3);

6.4. ADVANCED USAGE
When restoring images in the phase closure case, i.e., when the phase information is

solely supplied by closure phases, it may happen that the algorithm stalls in local min-

ima, preventing the image to evolve to the optimal or, at least, to a better solution. Soft

thresholding can be used in order to make MiRA jump out of local minima. It consists of

taking as input for the next step the previous restored image subtracted by a percentage

of its maximum, assuring that no negative values are passed. This can be achieved, for

instance, with the following code:

...

img1= mira_solve(db, img0, maxeval=500, verb=10, xmin=0.0, ...);

img2= mira_solve(db, max(0.0, img1 - 0.05*max(img1))), maxeval= 500, verb=10, ...);

...

6.5. TROUBLESHOOTING
1. When compiling Yorick from the source (see section 6.2.1), make sure you have

the package libx11-dev installed, or you will get compilation errors.

2. If you have an Intel graphics card and are using the nouveau or Intel driver, Yorick
might crash after running MiRA or when trying to use a small font height in plots. If

that is the case, install the 75 and 100 dpi bitmap font packages. For Debian based

machines, type in the terminal:

sudo apt install xfonts-75dpi xfonts-100dpi

Test that everything is OK. You can do it inside Yorick with, for example

plt, ’’Hello, World!", 0.35, 0.65, height=6;

or by executing a mira_solve() command.





7
IMAGE RECONSTRUCTION WITH

WISARD

7.1. INTRODUCTION
WISARD stands for “Weak-phase Interferometric Sample Alternating Reconstruction De-

vice”. Developed around 2005 at ONERA by S.Meimon, the first version of WISARD re-

covers a monochromatic (“grey”) image from power spectrum and closure phase data

alone. In contrast to, e.g., MiRA, WISARD first converts the power spectrum and closure

phases measured by optical interferometry into equivalent pseudo complex visibilities

(so-called “myopic”) data akin to what radio astronomy produces. “Equivalent” here

meaning 1) that the phases and their variance are computed from, and are compatible

with, the measured phase closures and variances and 2) the amplitudes and variances

are computed from, and are compatible with, the measured squared visibilities and vari-

ances. A subsequent convexification approximation is performed.

From then on, reconstruction proceeds on the same grounds as for other image-

reconstruction programs, by minimizing a compound criterion with two terms, one mea-

suring the fit of the reconstruction given the data, the other regularizing the reconstruc-

tion based on a variety of priors (positivity, smoothness, etc).

The following text refers mostly to the envisioned use of WISARD through the OImag-

ing GUI, and heavily borrows from the documentation on the “standalone” version avail-

able at http://www.mariotti.fr/wisard_page.htm, which contains all relevant in-

formation not only on WISARD but also all references to the scientific publications asso-

ciated with the concepts behind WISARD and the copyrights. In particular, it is expected

from the user of WISARD, directly or through OImaging, that he/she obeys the acknowl-

edgments requirements described in http://www.jmmc.fr/wisard/acknowledgement.
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7.2. INSTALLATION AND CONFIGURATION
The installer can be downloaded from the JMMC website at http://www.mariotti.
fr/wisard_page.htm.

Although WISARD consists in a set of IDL procedures, it is not necessary to buy this

expensive software: the alternative, open-source, free IDL clone “GDL” is able to run

WISARD. GDL is available on several distributions (Debian, FreeBSD but also MacOS and

Windows). See http://gnudatalanguage.sourceforge.net/ for details.

We recommend GDL with a version ≥ 0.9.6. WISARD uses several procedures and

functions from the IDLASTRO library (http://idlastro.gsfc.nasa.gov) and C. Mark-

wardt’s library (https://www.physics.wisc.edu/~craigm/idl/). In the following,

the terms “IDL” and “GDL” are equivalent.

After unpacking the software (see below), you need to accept the license, which can

be accessed under IDL by typing:

dummy=wisard(/copyright)

7.2.1. DEPENDENCIES

WISARD needs Éric Thiébaut’s “OptimPack” library for IDL (OptimPack_IDL*.so) and its

IDL frontend (op_*.pro files) to be installed. For convenience, the OptimPack IDL fron-

tend and several pre-compiled OptimPack libraries for IDL (for Linux, Mac/OS and So-

laris, on 32 and 64-bit architectures, and for Windows) are included in the lib/optimpacklib/
directory of the WISARD distribution, with their author’s permission. WISARD selects the

library automatically so this should be transparent. In case of trouble, refer to the com-

plete documentation on the JMMC website.

7.2.2. UNPACKING THE SOFTWARE

WISARD is distributed in a compressed tar archive. Unpacking it is straightforward and

will create a WISARD/ directory under which is the distribution. From the shell prompt,

type:

tar xzvf Wisard-<version>.tgz

7.3. BASIC USAGE
As for other image-reconstruction programs, WISARD will need an input data set (one

or more OIFITS file — one file with OImaging), a field-of-view value (in milliseconds of

arc), and a choice between several regularisations. A maximum value for the number of

iterations or, alternatively, a convergence threshold, can be given to limit the number of

iterations. Additionally, an input “guess” image can be used as a starting point. In the

absence of a guess image, WISARD uses the dirty map (thresholded to positive values,

http://www.mariotti.fr/wisard_page.htm
http://www.mariotti.fr/wisard_page.htm
http://gnudatalanguage.sourceforge.net/
http://idlastro.gsfc.nasa.gov
https://www.physics.wisc.edu/~craigm/idl/
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directly computed as the Fourier transform of the myopic complex visibilities). Other

input options are possible, for example to set the minimum number of pixels recon-

structed (by default this value is the minimum number needed to fulfill the Shannon-

Nyquist criterion).

The choice of the Field of View (FOV in the OImaging interface) is critical for the good-

ness of the WISARD reconstruction.

WISARD takes all tables in the OIFITS file(s) passed and merges them in the mini-

mal set of tables possible: one table per interferometric observable (V2, closure...), array,

object,spectral setup. If the data contains several objects, the one for which image re-

construction should be attempted should be given. Besides there are some constraints

on the data (next section).

7.3.1. CONSTRAINTS ON THE INPUT DATA

WISARD quickly evades the problematic of image reconstruction in optical interferom-

etry by using “equivalent” radio-like complex visibilities. By doing so, it poses severe

constraints on the observational data:

• WISARD needs to correctly associate triplets and visibility baselines. That is, any

closure measurement should be associated with 3 existing square visibilities (one

on each baseline associated with the triplet). This imposes that related closures

and visibilities share the same value of TIME or MJD, a constraint not imposed

by the OIFITS format and not followed by some instruments. It is possible to ask

WISARD to allow for small differences in the time-stamps of closures wrt. their

related square visibilities by giving a delta time (in seconds) in which two TIME or

MJD can be deemed equal. The consequence of this restriction is that WISARD may

retain fewer observations than present in the data.

• Due to its matrix internal treatment, and pending a complete rewrite (yet unfore-

seen), WISARD cannot mix arrays with different numbers of telescopes. WISARD will

try to determine the number of telescopes used, based on statistics of the baselines

present in the data, and can be corrected if it guesses wrong. In the transforma-

tion from closures and squared visibilites to complex visibilities, unknown phases

are added, but the number of unknowns decreases rapidly with the number of si-

multaneous telescopes used: it is in percentage 66% for 3 telescopes, 50% for 4

and 33% for 6. WISARD will perform way better when it can use more simultane-

ous telescopes, even if doing so it discards data obtained with fewer telescopes,

which can happen if, e.g., some baseline was “lost” during the observations. In

the more desperate cases, one can ask WISARD to consider the data as only coming

from 3 telescopes: all the closures present in the data will be taken into account,

but separately, and at the expense of a worse data reconstruction.

• WISARD uses only the OIFITS observables VIS2DATA, VIS2ERR and T3PHI, T3PHIERR.

All other observables are ignored.

In summary: inputting WISARD with a set of heterogeneous data observed using various
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instruments, or using various numbers of baselines, will likely result in WISARD using

only a “homogeneous” subset of all the data and discard all the rest. This selection pro-

cess is not usually significant with “modern” OIFITS made by recent optical interferom-

etry instruments.

7.3.2. DATA SELECTION

WISARD reconstruct a wavelength-independent (“grey”) image. Selecting a range of spec-

tral channels (in the case of multi-channel data) is possible and will permit a piece-wise

reconstruction for objects that change shape significatively along the observed spectral

band.

7.3.3. CHOICE OF REGULARIZATION

Beside the usual constraint of positivity of the reconstruction, WISARD proposes a choice

of regularizations, mathematical expressions of the somewhat fuzzy preconceived idea

that the object to be reconstructed has some kind of smoothness (or piece-wise smooth-

ness, or global smoothness apart from some spikes, etc). In WISARD, several regulariza-

tion terms are available to embody this prior knowledge of the solution.

1. A smooth solution is obtained by a quadratic regularization, which uses the ob-

ject’s PSD (Power Spectral Density) as input. This regularization needs the PSD,

a 2-D map of size NP_MIN×NP_MIN containing the PSD for the (quadratic) regu-

larization of the reconstruction. Another parameter, MEAN_O, can be passed to

this regularization: it is a 2-D map of size NP_MIN×NP_MIN containing the MEAN

Object to be used for regularization of the reconstruction.

Using the OImaging interface, this is triggered by the PSD choice.

2. A piece-wise smooth prior is obtained by a linear-quadratic (so-called L1L2) regu-

larization. This prior is called edge-preserving as it allows sharp edges in the object

if the data is compatible with them, contrarily to a quadratic regularization. Asso-

ciated parameters are DELTA and SCALE:

• DELTA is a scalar factor for L1-L2 regularization, used to set the threshold

between quadratic (L2) and linear (L1) regularization.

• SCALE is a scalar factor for L1-L2 regularization, which should be of the order

of the RMS object’s gradient value. More details are available in the JMMC

documentation.

Using the OImaging interface, this is triggered by the L1L2 choice.

3. A variant of this regularization, designed to grant the solution with some smooth-

ness while allowing spikes: this pixel-independent (or white) L1L2 regularization

is called spike-preserving. Associated parameters are DELTA and SCALE as above,

except that SCALE should be here of the order of the average object value.

Using the OImaging interface, this is triggered by the L1L2WHITE choice.

4. The Total Variation (totvar) regularization, which tends to avoid having many

small variations in the image but does not object to have a small number of large
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variations. This preserve extended shapes (making them more uniform than they

probably are) and does not remove isolated spikes (e.g., stars). totvar is a simple

and quite successful regularization for astronomical image restoration.

Using the OImaging interface, this is triggered by the TOTVAR choice.

5. The soft_support regularization uses an additional image (map) and forces the

reconstructed image towards the shape of this support (e.g., a star uniform disk).

Since the interchange format for image reconstruction algorithms does not im-

plement this case, this regularization will probably be absent from OImaging. As-

sociated parameters are MU_SUPPORT, FHM and MEAN_O. Refer to the JMMC

documentation for more information on this regularization.

Using the OImaging interface, this is triggered by the SOFT_SUPPORT choice.

7.4. STOPPING CRITERION
The stopping criterion occurs after either NBITER iterations or when the THRESHOLD

has been attained:

• NBITER is the maximum number of iterations for the reconstruction, 500 by de-

fault. For a better control of the reconstruction, one should rather use THRESHOLD
below and not lower this value.

• THRESHOLD is the convergence threshold to be used as a stopping criterion for

the iterations. It is by default set to the machine precision in simple precision

(around 10−7), even if computations are done in double precision. For a (rather)

quick-look result, set to a smaller value, e.g., 10−6.

7.5. OUTPUT PARAMETERS
WISARD in its standalone version outputs at the end of a minimization cycle the recon-

structed image and an IDL structure, AUX_OUTPUT, described in the file wisard.pro

of the distribution and containing all relevant information. The wisardgui procedure

used in conjunction with the OImaging GUI reads and writes OIFITS files according to

the interoperability norm described in the Interface to Image Reconstruction document

(https://github.com/emmt/OI-Imaging-JRA/blob/master/doc/interface/OI-Interface.
pdf)

7.5.1. GALLERY

The following figures are examples of what can be expected from WISARD depending

from the regularization used (and the peculiarities of the object-to-be reconstructed).

https://github.com/emmt/OI-Imaging-JRA/blob/master/doc/interface/OI-Interface.pdf
https://github.com/emmt/OI-Imaging-JRA/blob/master/doc/interface/OI-Interface.pdf
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Figure 7.1: Four reconstructed images of the same object as in previous chapters, stopping criteria is 10−6,
from left to right and top to bottom: PSD, TOTVAR, L1L2 and L1L2WHITE. L1L2WHITE give the best results in
this case (smooth object wit a spike at the center), and TOTVAR the worst.

Figure 7.2: Two reconstructed images of a binary: a bright unresolved source near to the large uniform disk of
a supergiant. The scaling of the image is logarithmic as to show the disk of the supergiant star. Left: TOTVAR,
right L1L2WHITE. TOTVAR is closer in this case to the flatness of the supergiant surface and the compactness
of the unresolved star.
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CONCLUSIONS

• Restoring milliarcsecond resolution interferometric images in the infrared will rep-

resent a key facility for the new generation of optical interferometers. During the

last decade, the community has gain experience by developing a number of differ-

ent softwares and innitiatives (e.g., the Interferometric Imaging Beauty Contest).

The packages, here described, are the result of an extensive collaborative effort and

represent a reliable basis to properly recover images from interferometric data.

• The current understanding of the image reconstruction problem together with to-

day’s development of software allow the user to perform both mono-chromatic

and poly-chromatic image reconstructions of simulated and real interferomet-

ric data. However, algorithms to perform full poly-chromatic reconstructions are

still under development and future improvements of the existing software should

move towards this field.

• Testing the image capabilities of the different imaging algorithms have been essen-

tial to have a full description of them. This agrees with the main goal of this report,

which consists in providing a simple an homogeneous view of image reconstruc-

tion in optical interferometry to the community, by having complete cookbooks of

the different packages as well as a dedicated GUI to use them.

• The better we understand the requirements to achieve a science-grade images

from interferometric observations, the easier will be to provide tools and proce-

dures to the community to make more accessible the use of the current tech-

niques. This is a task that should be addresses in the coming years as part of an

effort to broaden and engage the field with more members of the international

community.
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