AMHRA (ANALYSE ET MODÉLISATION EN HRA) MOIO/JMMC

Armando DOMICIANO DE SOUZA (OCA-Lagrange)

A. Meilland, C. Ordenovic, L. Abe, A. Chiavassa, F. Guitton (OCA-Lagrange), L. Bourgès, G. Mella (OSUG)

AG du JMMC – OBSPM, Paris, 15 mars 2018

Présentation de AMHRA

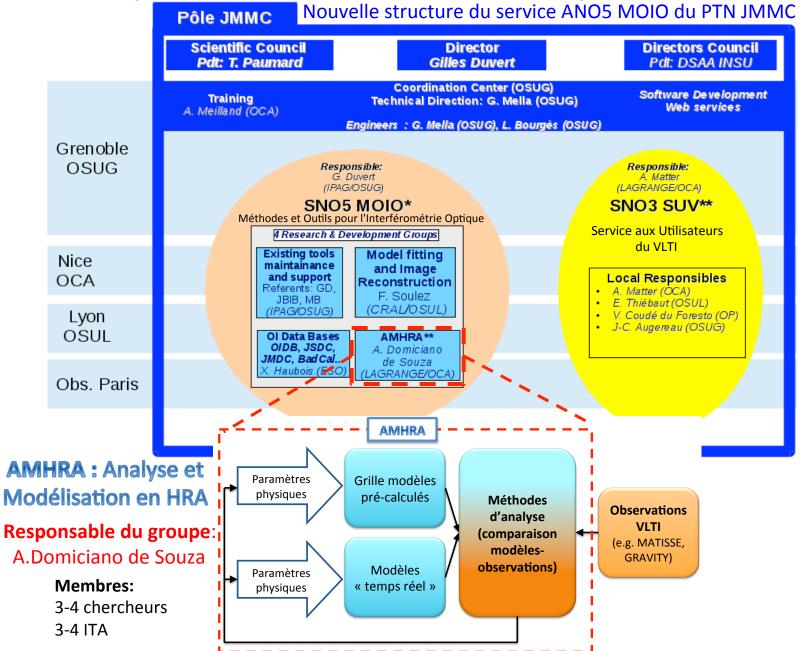
Modèles astrophysiques

➢ Prospective

≻Démo AMHRA→ASPRO

Présentation de AMHRA

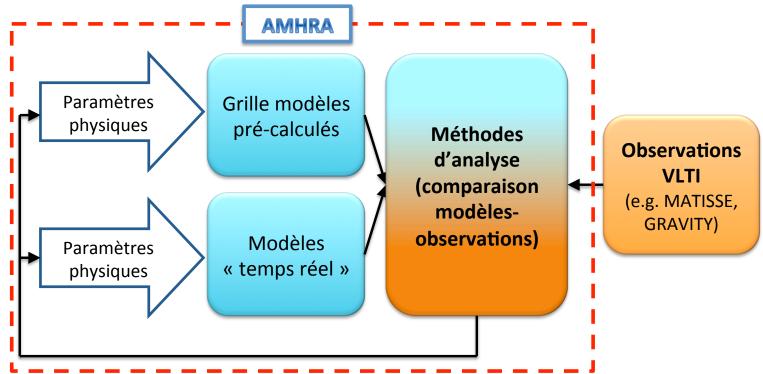
➢Modèles astrophysiques


➢ Prospective

≻Démo AMHRA→ASPRO

AMHRA (ANO5 MOIO - PTN JMMC)

_ _ _


_ _ _ _

4

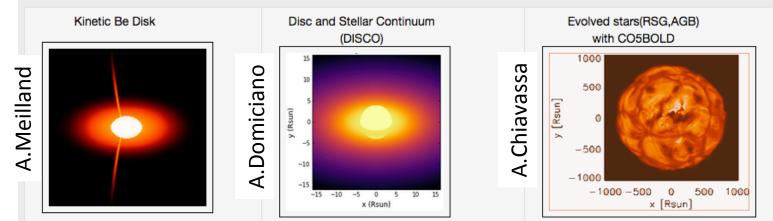
AMHRA (ANO5 MOIO - PTN JMMC)

AMHRA : Analyse et Modélisation en HRA

Objectif d'AMHRA (texte page web MOIO/JMMC) :

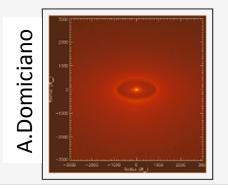
... to develop and/or provide astrophysical models and data analysis tools dedicated to the scientific exploitation of high angular and high spectral facilities (in particular ESO-VLTI instruments) by the astronomical community, including nonspecialists in interferometry.

➢ Présentation de AMHRA


Modèles astrophysiques

➢ Prospective

≻Démo AMHRA→ASPRO


AMHRA: modèles astrophysiques

Real Time astrophysical models

Pre-calculated grids of astrophysical models

Supergiant B[e] with HDUST

Modèles disponibles dans la page web AMHRA (prototype pour beta-tests) http://azurvo3.oca.eu:8080/ AMHRA/index.htm

AMHRA: modèles astrophysiques

Interface web utilisateur de AMHRA

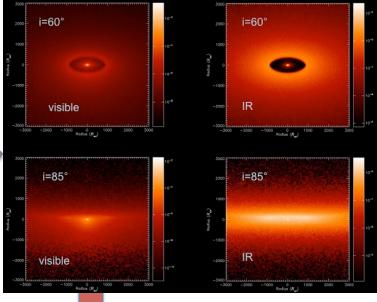
<u>http://azurvo3.oca.eu:8080/AMHRA</u> (simulation temps-réel ou grilles de modèles)

L'utilisateur défini les valeurs des paramètres physiques du modèle dans un formulaire web

Central Star Param	eters	
Star Radius :		
	0.0	Rsun
Star Temperature :		
	٥	0.0 K
Star Mass :		
	0.0	MSun
Circumstellar gas-c	lisc parameters	
Disc outer radius :		
	0.0	RSun
Basis disc Temperature:		
	0	0.0 K
Gas-disc temperature pow	er:	
0.0		

AMHRA: modèles astrophysiques

Interface web utilisateur de AMHRA

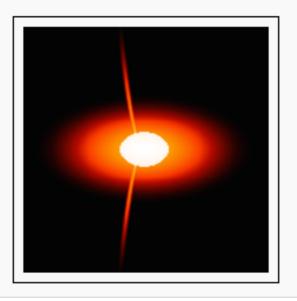

<u>http://azurvo3.oca.eu:8080/AMHRA</u> (simulation temps-réel ou grilles de modèles)

L'utilisateur défini les valeurs des paramètres physiques du modèle dans un formulaire web

Control Ctor Doromoto

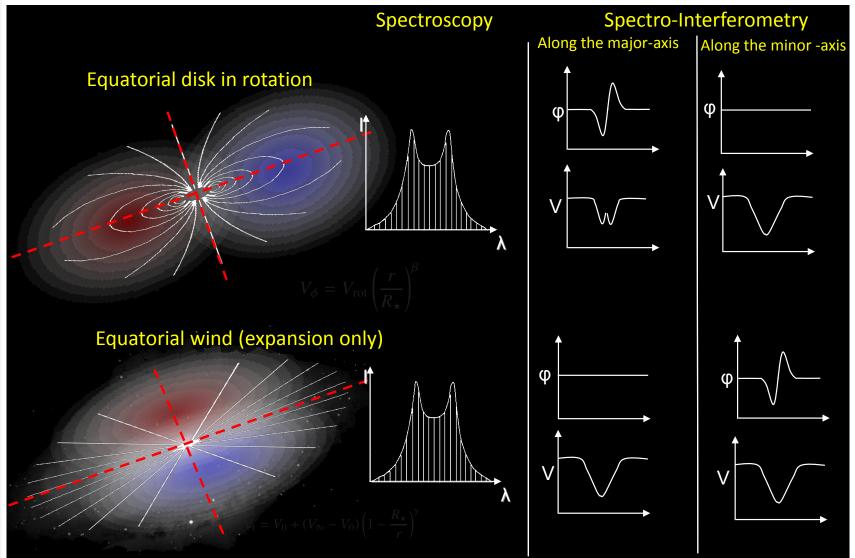
0.0 Rsun Star Temperature : 0.0 K Star Mass : 0.0 MSun Circumstellar gas-disc parameters Disc outer radius : 0.0 RSun	Central Star Param	leters		
Star Temperature : 0.0 K Star Mass : 0.0 MSun 0.0 MSun Circumstellar gas-disc parameters Disc outer radius : 0.0 RSun Basis disc Temperature: 0.0 K	Star Radius :			
0.0 K Star Mass : 0.0 MSun Circumstellar gas-disc parameters Disc outer radius : 0.0 RSun Basis disc Temperature: 0.0 K		0.0	R	sun
Star Mass : 0.0 MSun Circumstellar gas-disc parameters Disc outer radius : 0.0 RSun Basis disc Temperature: 0.0 K Gas-disc temperature power:	Star Temperature :			
0.0 MSun Circumstellar gas-disc parameters Disc outer radius : 0.0 RSun Basis disc Temperature: 0.0 K Gas-disc temperature power:			0.0	к
Circumstellar gas-disc parameters Disc outer radius : 0.0 RSun Basis disc Temperature: 0.0 K Gas-disc temperature power:	Star Mass :			
Disc outer radius : 0.0 RSun Basis disc Temperature: 0.0 K Gas-disc temperature power:		0.0	MS	Sun
Basis disc Temperature: 0.0 K Gas-disc temperature power:	Circumstellar gas-o	disc parameters		
0.0 K		0.0	R	Sun
Gas-disc temperature power:	Basis disc Temperature:			
			0.0	К
0.0	Gas-disc temperature pow	ver:		
	0.0			

Cartes d'intensité polycromatiques (cube d'images)



Input pour d'autres outils JMMC

- ASPRO (préparation des observations)
- LITPro (ajustement de modèles)
- ✓ WISARD, OIMAGING, MIRA, etc (image de départ pour reconstruction d'images)
- ✓ **SUV** (support aux utilisateurs du VLTI)


Kinetic Be Disc (A. Meilland)

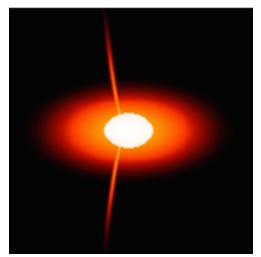
Kinetic Be Disk

Delaa et al. 2011, A&A, 529, A87

Kinetic Be Disc (A. Meilland)

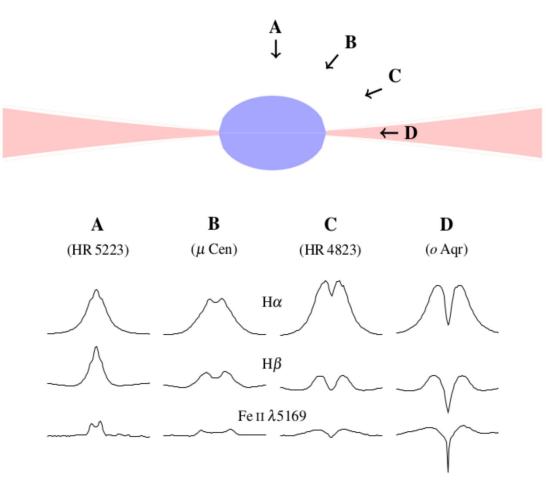
Kinetic Be Disc (A. Meilland)

$$V_{\text{proj}}(x, y) = (V_{\phi} \sin \phi - V_{r} \cos \phi) \times \sin i$$

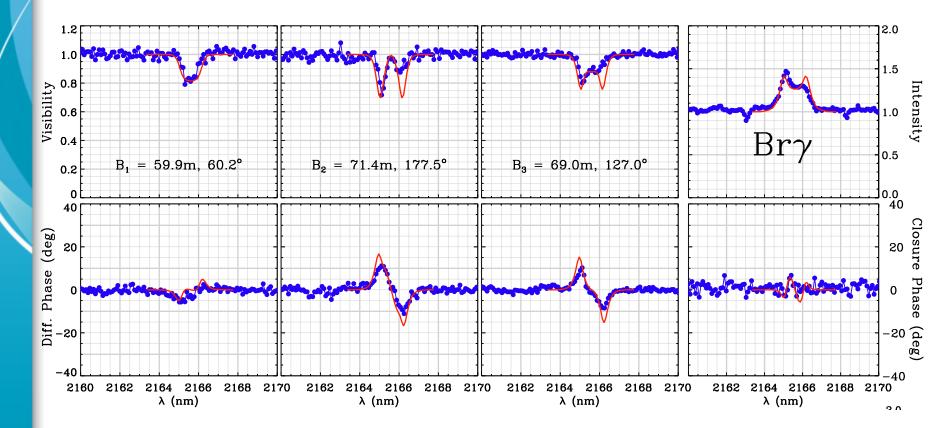

$$R(x, y, \lambda, \delta\lambda) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\left(\frac{V_{\text{proj}}(x, y) - V(\lambda)}{\sqrt{2}\sigma}\right)^2 \sigma\right]$$
$$\sigma = \frac{\delta V}{2\sqrt{2} \ln(2)} = \frac{\delta\lambda c}{2\lambda\sqrt{2} \ln(2)}$$

Vitesse projetée pour une inclinaison donnée

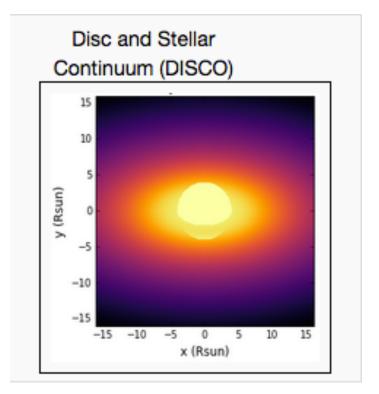
Régions d'iso-vitesse avec décalage Doppler


$$I_{\text{tot}}(x, y, \lambda, \delta\lambda) = I_{\star}(x, y) \times F_{\star}(\lambda) + I_{\text{env}}(x, y) \times F_{\text{env}} + I_{\text{line}}(x, y) \times R(x, y, \lambda, \delta\lambda) \times EW.$$

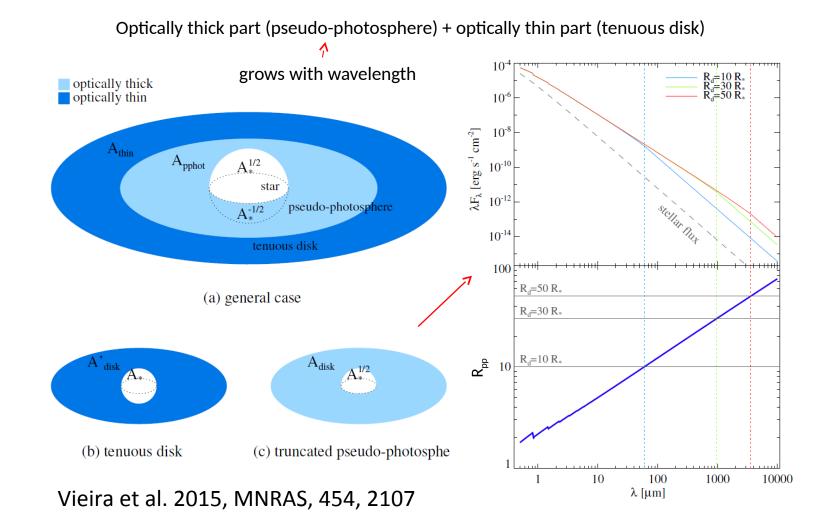
Cartes d'intensité (cube d'images) avec contribution de l'étoile centrale, du continuum du gaz et de la raie spectrale en émission


Kinetic Be Disc (A. Meilland)

Vue schématique d'une étoile Be (étoile + disque)


Kinetic Be Disc (A. Meilland)

Modélisation d'observables spectro-interférométriques


Meilland et al. 2011

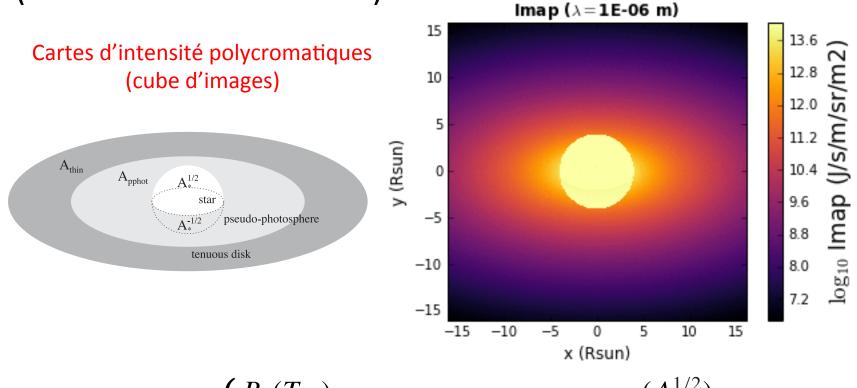
DISCO – DIsc and Stellar COntinuum (A. Domiciano de Souza)

Vieira et al. 2015, MNRAS, 454, 2107

DISCO – DIsc and Stellar COntinuum (A. Domiciano de Souza) VDD continuum emission

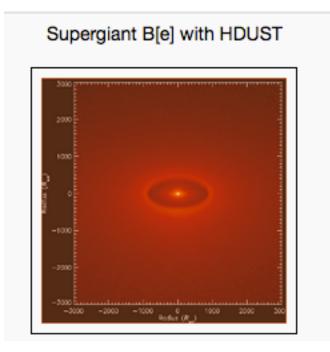
DISCO – DIsc and Stellar COntinuum (A. Domiciano de Souza)

Viscous Decretion Disc (VDD) model for a geometrically thin disc


$$\tau_{\lambda} = \int_{-\infty}^{\infty} \kappa_{\lambda} dz = \tau_0 \frac{T_{\star}}{T_d(\varpi)} \left(\frac{\varpi}{R_{\star}}\right)^{-2n+\beta}$$

where we define

$$\tau_0 = \frac{0.018}{T_{\star}} \gamma \overline{z^2} \left(\frac{\rho_0}{\mu m_H}\right)^2 \left(\frac{\pi k}{\mu m_H} \frac{R_{\star}^3}{GM_{\star}}\right)^{1/2} (\lambda/c)^2 \left[g(\lambda, T_d) + b(\lambda, T_d)\right].$$


Vieira et al. 2015 and 2016

DISCO – DIsc and Stellar COntinuum (A. Domiciano de Souza)

$$I_{\lambda}(\varpi') = \begin{cases} B_{\lambda}(T_{\text{eff}}) & (A_{\star}^{1/2}) \\ B_{\lambda}(T_{\text{eff}}) e^{-\tau_{i}} + B_{\lambda}(T_{d}) [1 - e^{-\tau_{i}}] & (A_{\star}^{-1/2}) \\ B_{\lambda}(T_{d}) [1 - e^{-\tau_{i}}] & (A_{\text{disc}}), \end{cases}$$

Vieira et al. 2015 and 2016

Domiciano de Souza & Carciofi 2012, ASPCS, 464, 149 Carciofi & Bjorkman 2006, ApJ, 2006, 639, 1081

Domiciano de Souza & Carciofi 2012, ASPCS, 464, 149

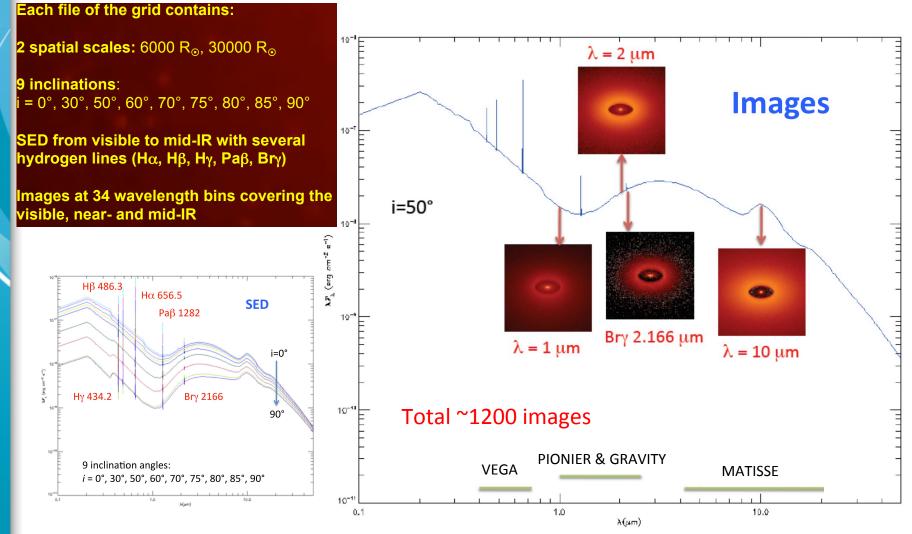
Hypothesis (model prescription):

Bimodal mass-loss with gas and dust Enhanced equatorial mass loss/density Axial-symmetry

Parametric model:

 β law for radiatively driven winds:

$$v_r(r,\theta) = v_0 + [v_\infty(\theta) - v_0](1 - R/r)^{\beta(\theta)}$$
$$v_\infty(\theta) = v_\infty(0)[1 + A_2 \sin^m(\theta)]$$
$$\beta(\theta) = \beta(0)[1 + A_3 \sin^m(\theta)]$$


Bimodal mass-loss/density:

$$\frac{d\dot{M}(\theta)}{d\Omega} = \frac{d\dot{M}(0)}{d\Omega} \left[1 + A_1 \sin^m(\theta) \right]$$
$$\rho(r,\theta) = \frac{d\dot{M}(\theta)/d\Omega}{r^2 v(r,\theta)}$$

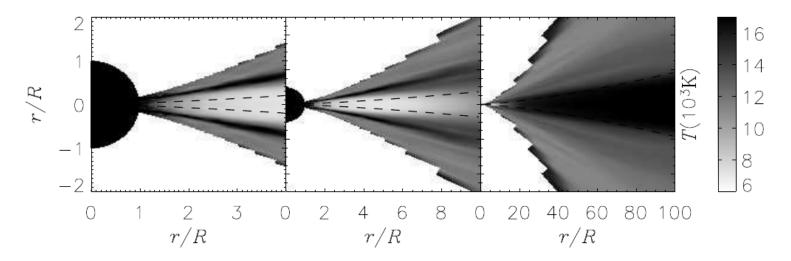
Stellar and wind parameters of HDUST grid of B[e] models

Parameter	Value			
Stell	Stellar parameters			
R	$10 \mathrm{R}_{\odot}$			
$T_{\rm eff}$	15 000, 20 000, 25 000 K			
$L \ (\Rightarrow \log(L/L_{\odot}))$	$12000\mathrm{L}_{\odot}~(\Rightarrow 4.08)$			
Wind parameters				
$d\dot{M}(0^{\circ})/d\Omega$	50, $100 \times 10^{-9} \mathrm{M_{\odot} yr^{-1} sr^{-1}}$			
v_0	$10 \rm km s^{-1}$			
$v_{\infty}(0^{\circ})$	$600 \mathrm{km s^{-1}}$			
β, A_1, A_2	2, 49, -0.7			
$m \ (\Rightarrow \Delta \theta_{\rm dust})$	$182, 92, 20 ~(\Rightarrow 5^{\circ}, 7^{\circ}, 15^{\circ})$			

Domiciano de Souza & Carciofi 2012, ASPCS, 464, 149

Domiciano de Souza & Carciofi 2012, ASPCS, 464, 149

22


HDUST code

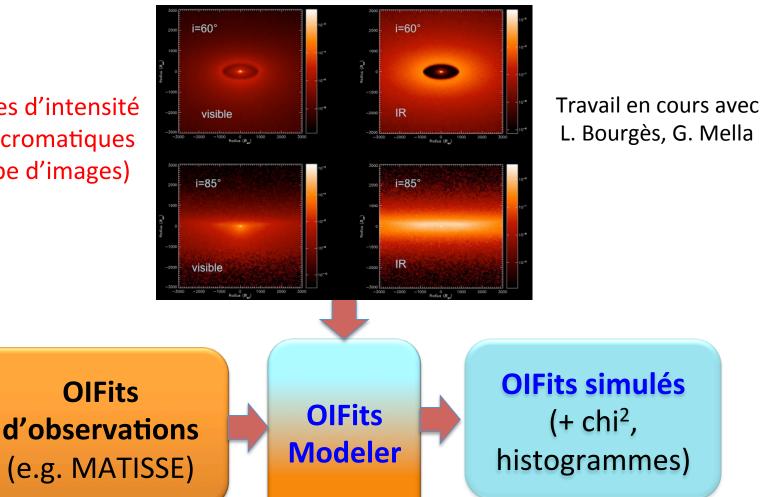
(A.C.Carciofi & J. Bjorkman 2006, 2008)

3D NLTE Monte Carlo radiative transfer code

- Solves the transfer of the stellar radiation through the circumstellar environment with arbitrary structure
- Monte Carlo simulation
 - Probabilistic methods are used to simulate the random propagation of individual photon packets (PPs) through the medium
 - Temperature, ionization (and density) structure of the circumstellar environment is obtained
 - Synthetic observables polarized spectra and intensity maps

23

➢ Présentation de AMHRA

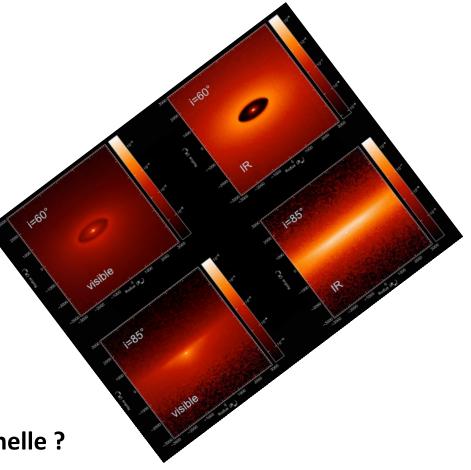

➢Modèles astrophysiques

➢ Prospective

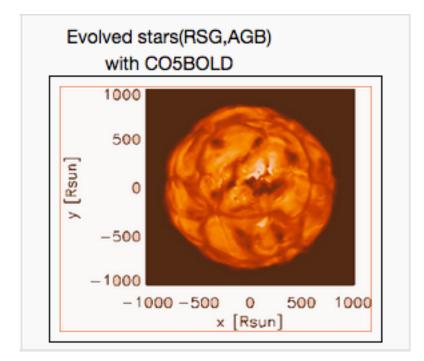
≻Démo AMHRA→ASPRO

AMHRA+ASPRO2: OIFits Modeler (?)

Cartes d'intensité polycromatiques (cube d'images)


Calcul d'observables interférométriques avec les algorithmes d'ASPRO2 + routines en développement pour calcul de chi², histogrammes, etc

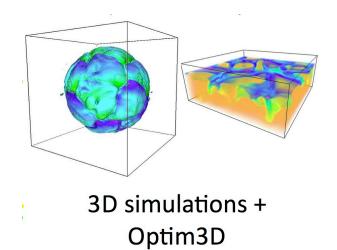
AMHRA+ASPRO2: OIFits Modeler (?)



Travail en cours avec L. Bourgès, G. Mella

Rotation et facteur d'échelle ?

Evolved stars (RSG, AGB) with CO5BOLD (A. Chiavassa)



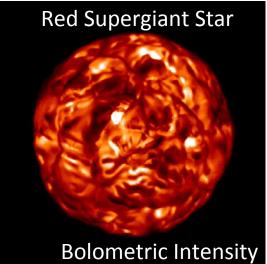
Chiavassa et al. 2009, A&A, 506, 1351 Chiavassa et al. 2011, A&A, 535, A22 Freytag et al. 2012, JCoPh, 231, 919 3D hydrodynamical simulations of stellar atmosphere

We use the stellar convection simulation computed with CO5BOLD code (Freytag et al. 2012)

Hydrodynamics 3D (Grid: 200³ - 300³ - 400³), time dependent Solution to the equations for the compressible hydrodynamics (conservation of mass, energy, and momentum) coupled with non-local transport of radiation with detailed opacities

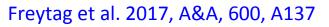
Global simulations Red supergiants and AGBs

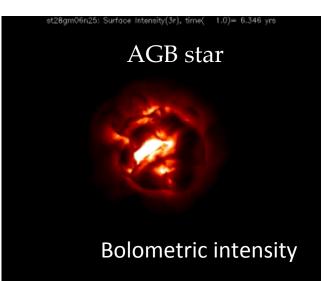
Detailed (billions of atomic and spectral lines) and fast (computational time slightly larger than 1D computation) post processing of 3D simulations with OPTIM3D (Chiavassa, Plez, Josselin, Freytag 2009, A&A, 506, 1351)

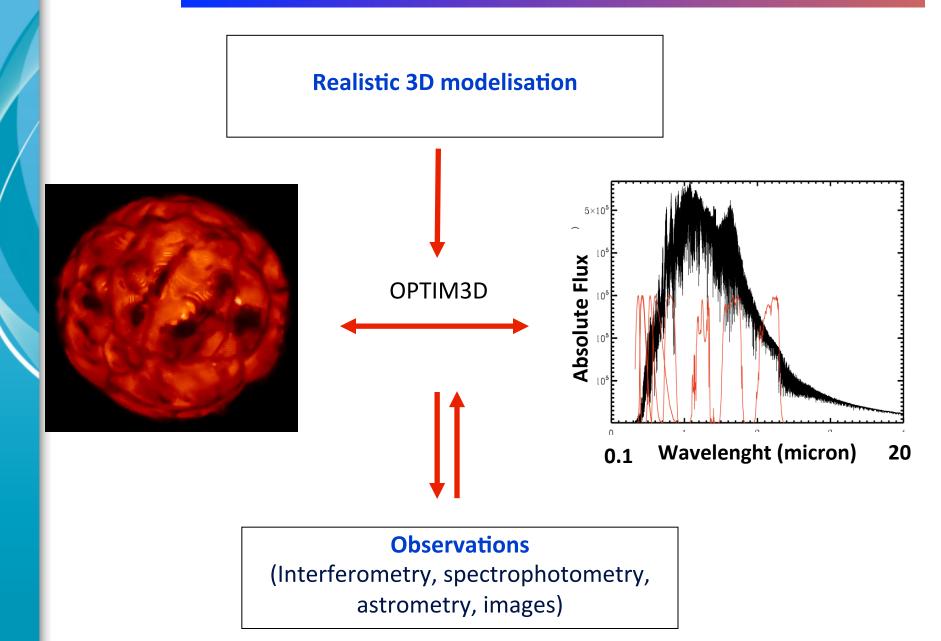

3D hydrodynamical simulations of stellar atmosphere

Typical values of a 3D simulation for:

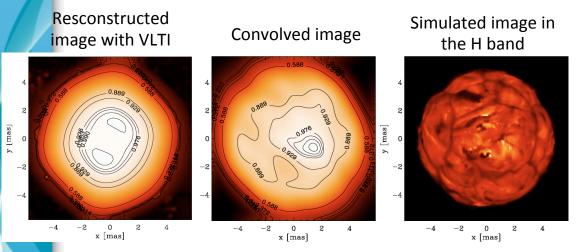
Red Supergiant star:

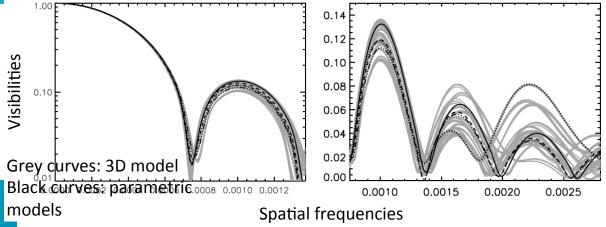

Teff = 3500 K Numerical resolution = 401^3 Log(g) = -0.33 Radius = 840 R_{\odot} Luminosity = 90000 L_{\odot} Mass enveloppe = 3 M_{\odot} Total Mass = 12 M_{\odot}


Chiavassa, Freytag, Masseron, Plez 2011, A&A, 535, A22



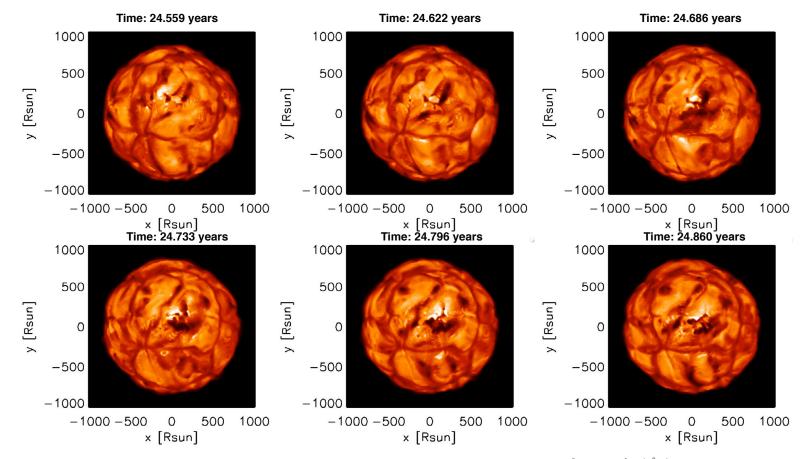
AGB star:


Teff = 2500 K Numerical resolution = 401^3 Log(g) = -0.83Radius = $429 R_{\odot}$ Luminosity = $7000 L_{\odot}$ Mass enveloppe = $0.186 M_{\odot}$ Total Mass = $1 M_{\odot}$


Some Results

Chiavassa, Lacour, Millour et al. 2010, A&A, 511, A51

First image of a massive evolved star with VLTI Amber


Interferometric visibility curves

Incertitude on radius determination. Clear deviations from spherical symmetry! Signature of convection

Chiavassa, Plez, Josselin, Freytag 2009, A&A, 506, 1351

Cartes d'intensité

Fig. 4. Top 6 panels: maps of the intensity in the IONIC filter (linear scale with a range of $[0;2.5 \times 10^5] \text{ erg cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1}$). The different panels correspond to snapshots separated by 230 days (~3.5 years covered). Bottom 6 panels: successive snapshots separated by 23 days (~140 days covered).

Chiavassa et al. 2009, A&A 506, 1351

➢ Présentation de AMHRA

Modèles astrophysiques

➢ Prospective

≻Démo AMHRA→ASPRO2