

LITpro: a model fitting software for optical interferometry

I. Tallon-Bosc, M. Tallon, E. Thiébaut, C. Béchet, G. Mella, S. Lafrasse,O. Chesneau, A. Domiciano, G. Duvert, D. Mourard, R. Petrov, M. Vannier

CRAL, Lyon France — LAOG, Grenoble, France — Fizeau lab, Nice/Grasse, France

- Short presentation of the main features of LITpro
- An example of a fit on real data :
 - chromatic model + heterogeneous data

What is LITpro ?

- Parametric model fitting software for interferometry
 - LITpro: Lyon Interferometric Tool prototype
 - Conceived and developed up-to-now at CRAL in Lyon
 - Graphical User Interface developed at JMMC (Jean-Marie Mariotti Center)
 - Now tested by a group within the JMMC research group (several labs in France)
- Aim: "exploit the scientific potential of existing interferometers", e.g. VLTI
- Complementary to image reconstruction
 - Sparse (u,v) coverage
 - Reconstructed images identify models
 - Model fitting extracts measured quantities

Leading requirements of LITpro

- Accessible to "general users" + flexible for "advanced users"
 - Opposite needs:
 - General users want simplicity (stepping stone)
 - Advanced users want a powerful tool (pioneering work)
 - Exchanges:
 - general users —(needs)—> advanced users
 - general users <---(training)--- advanced users
 - Progress must benefit to everybody (share experiences)
- Concentrate on the model of the object
 - Easy implementation of new models.
 - Only need to compute the Fourier transform of the object specific intensity on given coordinates (*u*, *v*, *wavelength*, *time*)

Leading requirements => implementation

- Accessible to astronomers + flexible for advanced users
 - flexible => high level language (Yorick)
 - easy modifications and adds in the software
 - "expert layer"
 - accessible => GUI
 - new abilities exposed once they are validated in the "expert" layer
- Concentrate on the model of the object
 - From Fourier transform of the object:
 - Simulated data (interferometric, spectroscopic, photometry, ...)
 - Images
 - LITpro also provides
 - Modeling builder (with GUI or filling a form)
 - Fitter "engine"
 - Tools for analysis

Types of data

- OIFITS
 - Squared visibilities (VIS2)
 - Complex visibilities (VISAMP, VISPHI)
 - Bispectrum (T3AMP, T3PHI)
- Others
 - Spectral Energy Distribution (dispersed fringes mode)
 - Photometry (see example)

— ...

 Through the GUI or through a form (file editor)

Fitting process

• No correlations on measurements in OIFITS:

$$\chi^2(\mathbf{p}) = \sum_{i=1}^{N_d} \left(\frac{r_i(\mathbf{p})}{\sigma_i}\right)^2$$

• If total energy is degenerated:

$$\chi^{2'}(\boldsymbol{p}) = \chi^2(\boldsymbol{p}) + N_d \left(\frac{\sum_j \Delta \lambda_j \ m_j(0)}{\sum_j \Delta \lambda_j} - 1\right)^2$$

- Levenberg-Marquardt algorithm (modified)
 - Combined with a Trust Region method
 - Bounds on the parameters
 - Partial derivatives of the model by finite differences
- More latter...
 - Search of global minimum

Implementation of the GUI

- Implemented in JAVA
 - Web service
 - Links with other services (JMMC)
 - Virtual Observatory
 - Data explorer
 - User feedback
 - ...
- GUI only tell "expert layer" (*Yorick*) what to do
- Currently beta testing
- First release expected ~ end of 2008

QuickTimeÊ et un d· compresseur sont requis pour visionner cette image.

Example: chromatic model + heterogeneous data / 1

Perrin et al, A&A 426, 279, 2004

 $I(\lambda, \theta) = B(\lambda, T_{\star}) \exp(-\tau(\lambda)/\cos(\theta))$ $+B(\lambda, T_{\text{layer}}) \left[1 - \exp(-\tau(\lambda)/\cos(\theta))\right]$ for $\sin(\theta) \le \emptyset_{\star}/\emptyset_{\text{layer}}$ and: $I(\lambda, \theta) = B(\lambda, T_{\text{layer}}) \left[1 - \exp(-2\tau(\lambda)/\cos(\theta))\right]$

- Why this example in particular ?
 - Fitting procedure is difficult
 - Need to improve procedures for "general users" (accessible ?)
 - How LITpro performs ?
 - Fitting interferometric + photometric data
 - Assess how it can help the fitting process

Example: chromatic model + heterogeneous data / 2

Perrin et al, A&A 426, 279, 2004

- squared visibilities : 4 sub-bands in K band
- magnitudes : J, H, K, L bands (Whitelock et al 2000)

I. Tallon-Bosc et al.

Perrin et al. fitting procedure

- (R_*,R_L) from gridding
 - fit all other parameters from fixed sampled values (R_{*},R_L)
 - arbitrary initial values of other parameters
 - (T_*, T_L) from gridding + intersection with K photometry
 - Difficult to use the other bandwidths
- Fit 4 optical depths from fixed other parameters
- Compare photometry with other bandwidths: J, H, L.

Simulatenous fitting of all the data

- 1) Overall size of the object?
 - Radius of uniform disk: 18 mas
- Y) Overall temperature ?
 - For an uniform disk: 1540K
- Ψ) Fit from this initial values
 - Initial values of optical depths set to zero => uniform disk

Comparison of results

	Fit with relative									
Parameter	r Perrin et al.		Simultaneous fit		photometry			Fit with only		
R_{\star} (mas) 10.94 ± 0.85		11 ± 0.13		11 ± 0.19		/	relative photometry, like the SED given by			
$R_{\rm L}$ (mas) 25.00 ± 0.17		25.4 ± 0.16		25.4 ± 0.18						
T_{\star} (K)	T_{\star} (K) 3856 ± 119		3694 ± 113		3778 ± 163			an optical interferometer		
$T_{\rm L}$ (K)	$T_{\rm L}$ (K) 1598 ± 24		1613 ± 35		1681 ± 174					
$\tau_{2.03}$	2.03 1.19 ± 0.01		1 ± 0.14		0.9 ± 0.35					
$\tau_{2.15}$	2.15 0.51 ± 0.01		0.42 ± 0.08		0.36 ± 0.17					
$\tau_{2,22}$	0.33 ± 0.01		0.27 ± 0.05		0.23 ± 0.11					
$\tau_{2.39}$	1.37 ± 0.01		1.2 ± 0.13		1.08 ± 0.32					
γ	_		- 1		0.9 ± 0.2					
Correlation matrix										
		р 1	De matie	T 1	Τ	+ 1	+ 2	±2	+ (
	D 1	K_1	RS_ratio	1_1	1_S	taui	tauz	taus	tau4	
K_1		1	-0.66	-0.36	0.14	0.21	0.17	0.16	0.13	
Rs_ratio		-0.66	1	0.71	-0.6	-0.67	-0.67	-0.66	-0.62	
	T_1	-0.36	0.71	1	-0.74	-0.94	-0.93	-0.93	-0.92	
T_s 0.14		-0.6	-0.74	1	0.91	0.91	0.92	0.92	_	
tau1 0.21		-0.67	-0.94	0.91	1	0.99	0.99	0.99		
tau2 0.17		-0.67	-0.93	0.91	0.99	1	0.99	0.99		
	tau3	0.16	-0.66	-0.93	0.92	0.99	0.99	1	0.99	
	tau4	0.13	-0.62	-0.92	0.92	0.99	0.99	0.99	1	Chan A

I. Tallon-Bosc et al.

SPIE 7013 on Optical and Infrared Interferometry— Marseille — June 23-27, 2008

Conclusions

- LITpro
 - First public release forseen ~ end of 2008
- High in the list
 - Search for global minimum of χ^2
 - Associate Image reconstruction and Model fitting
- Fitting simultaneously heterogeneous data is better
 - Needs for SED in OIFITS standard (dispersed fringes)

