Laurent Bourgès Alexis Matter

Test report on MATISSE ETC / ASPRO 2

ASPRO2 version : 20.01 beta 4

2020.01.31

Introduction

This document presents a comparison between the reference MATISSE ETC with ASPRO2. Only fundamental noises (source photon noise, detector readout noise, thermal background photon noise) are taken into account at the moment. The different SNR and error estimations shown here do not include broadband calibration errors such as the thermal background subtraction errors (affecting especially the non-chopped LM band photometries, and the N-band photometries in general) or the variations of the interferometric transfer function. Such broadband calibration errors will affect the accuracy (e.g., the absolute visibility level) but not the precision of the data. They will be included later.

LM band	

Instrumental setup : Telescopes : ATs Spectral resolution : LOW_LM Observing mode : Si_phot DIT = 111 ms Exposure time : 4min on interferometry + 4 min on photometry (per beam)

LM-LOW					
Observable (at 3.5 um)	1 Jy source		30 Jy source		
	MATISSE ETC	ASPRO2	MATISSE ETC	ASPRO2	
Squared coherent flux SNR	17	18.5	540	590	
Photometry SNR	28	29.5	800	845	
Squared visibility SNR	13	14.5	395	425	
Closure phase error [deg]	3°	2.8 °	0.1 °	0.09 °	

Fig 1: ASPRO2 SNR values. From top to bottom: squared coherent flux, photometry, squared visibility, closure phase & closure phase error

Fig 2: ETC MATISSE SNR values. Top left: squared coherent flux; top right: photometry; bottom left: squared visibility ; bottom right : closure phase error.

Case 2 : 30 Jy source (m_L = 2.45)

Fig 3: ASPRO2 SNR values. From top to bottom : Squared coherent flux, photometry, squared visibility

Fig 4: ETC MATISSE SNR values. Top left: squared coherent flux; top right: photometry; bottom left: squared visibility ; bottom right : closure phase error.

Instrumental setup : Telescopes : ATs Spectral resolution : MED_LM Observing mode : Si_phot DIT = 111 ms Exposure time : 4min on interferometry + 4 min on photometry (per beam)

LM-MED					
Observable (at 3.5 um)	30 Jy source		100 Jy source		
	MATISSE ETC	ASPRO2	MATISSE ETC	ASPRO2	
Squared coherent flux SNR	33	33	115		
Photometry SNR	41	41.6	135		
Squared visibility SNR	22	22.6	72		
Closure phase error [deg]	1.5 °	1.5 °	0.5 °		

Case 1 : 30 Jy source (m_L = 2.45)

Fig 5: ASPRO2 SNR values. From top to bottom : Squared coherent flux, photometry, squared visibility

Fig 6: ETC MATISSE SNR values. Top left: squared coherent flux; top right: photometry; bottom left: squared visibility ; bottom right : closure phase error.

Fig 7: ASPRO2 SNR values. From top to bottom : Squared coherent flux, photometry, squared visibility

Fig 8: ETC MATISSE SNR values. Top left: squared coherent flux; top right: photometry; bottom left: squared visibility ; bottom right : closure phase error.

Instrumental setup :

Telescopes : ATs Spectral resolution : HIGH_L Observing mode : Si_phot DIT = 111 ms Exposure time : 4min on interferometry + 4 min on photometry (per beam)

L-HIGH					
Observable (at 3.5 um)	30 Jy source				
	MATISSE ETC	ASPRO2	MATISSE ETC	ASPRO2	
Squared coherent flux SNR	5	5			
Photometry SNR	11	11			
Squared visibility SNR	4	4.2			
Closure phase error [deg]	<mark>5.5 °</mark>	<mark>11 °</mark>			

Case 1 : 30 Jy source (m_L = 2.46)

Fig 9: ASPRO2 SNR values. From top to bottom : Squared coherent flux, photometry, squared visibility

Fig 10: ETC MATISSE SNR values. Top left: squared coherent flux; top right: photometry; bottom left: squared visibility ; bottom right : closure phase error.

Instrumental setup : Telescopes : ATs Fringe tracker : GRA4MAT Spectral resolution : VERY_HIGH_L (Warning : Instrumental transmission to be updated. The actual transmission profile of the very-high resolution grism is significanyl increasing between 3.6 and 4 um. At the moment, only an average constant transmission is used across the spectral band.) Observing mode : Si_phot DIT = 10 s

Exposure time : 4min on interferometry + 4 min on photometry (per beam)

L-VERY_HIGH					
Observable (at 3.95 um)	20 Jy source				
	MATISSE ETC	ASPRO2	MATISSE ETC	ASPRO2	
Squared coherent flux SNR	9.5	8.9			
Photometry SNR	12	11.8			
Squared visibility SNR	6.5	6.0			
Closure phase error [deg]	5.5 °	5.7 °			

Case 1 : 20 Jy source (m_L = 2.9)

VLTI - MATISSE [3.682 μm - 4.1303 μm] - D0-G2-J3-K0 Day: 2019-05-10 - Source: TEST

Fig 11: ASPRO2 SNR values. From top to bottom : Squared coherent flux, photometry, squared visibility

Fig 12: ETC MATISSE SNR values. Top left: squared coherent flux; top right: photometry; bottom left: squared visibility ; bottom right : closure phase error.

Instrumental setup : Telescopes : ATs Fringe tracker : GRA4MAT Spectral resolution : VERY_HIGH_M (Warning : chopping will actually be required in that mode to obtain accurate absolute measures at any source brightness) Observing mode : Si_phot DIT = 10 s

Exposure time : 4min on interferometry + 4 min on photometry (per beam)

M-VERY_HIGH					
Observable (at 4.75 um)	20 Jy source				
	MATISSE ETC	ASPRO2	MATISSE ETC	ASPRO2	
Squared coherent flux SNR	~ 20	19.3			
Photometry SNR	~ 29	31.25			
Squared visibility SNR	~ 15	14.8			
Closure phase error [deg]	~ 3 °	2.5 °			

Case 1 : 20 Jy source (m_M = 2.3)

Fig 11: ASPRO2 SNR values. From top to bottom : Squared coherent flux, photometry, squared visibility

Fig 14: ETC MATISSE SNR values. Top left: squared coherent flux; top right: photometry; bottom left: squared visibility ; bottom right : closure phase error.

Conclusion on MATISSE LM band comparison :

Good agreeement between both tools. The SNR estimates are consistent for all observables N band

Instrumental setup :

Telescopes : ATs Spectral resolution : LOW_N Observing mode : High_Sens DIT = 20 ms Exposure time : 4min on interferometry + 2 min on photometry per beam (with chopping)

N-LOW					
Observable (at 10.5 um)	20 Jy source		100 Jy source		
	MATISSE ETC	ASPRO2	MATISSE ETC	ASPRO2	
Squared coherent flux SNR	4	4	55	59	
Photometry SNR	16	16.1	75	81	
Squared visibility SNR	3.7	3.9	39	41.7	
Closure phase error [deg]	<mark>3.7 °</mark>	<mark>13.5 °</mark>	0.8 °	0.86 °	

Case 1 : 20 Jy source (m_N = 0.7)

Fig 15: ASPRO2 SNR values. From top to bottom : Squared coherent flux, photometry, squared visibility

Fig 16: ETC MATISSE SNR values. Top left: squared coherent flux; top right: photometry; bottom left: squared visibility ; bottom right : closure phase error.

Case 2 : 100 Jy source (m_N = -1)

Fig 17: ASPRO2 SNR values. From top to bottom : Squared coherent flux, photometry, squared visibility

Fig 18: ETC MATISSE SNR values. Top left: squared coherent flux; top right: photometry; bottom left: squared visibility ; bottom right : closure phase error.

Instrumental setup : Telescopes : ATs Spectral resolution : HIGH_N Observing mode : High_Sens DIT = 75 ms Exposure time : 4min on interferometry + 2 min on photometry per beam (with chopping)

N-HIGH					
Observable (at 10.5 um)	20 Jy source		100 Jy source		
	MATISSE ETC	ASPRO2	MATISSE ETC	ASPRO2	
Squared coherent flux SNR	0.9	0.9	16	16	
Photometry SNR	5	5	24	24	
Squared visibility SNR	0.8	0.9	11	11.8	
Closure phase error [deg]	<mark>11°</mark>	<mark>75 °</mark>	2.5 °	3.2 °	

Case 1 : 20 Jy source (m_N = 0.7)

Fig 19: ASPRO2 SNR values. From top to bottom : Squared coherent flux, photometry, squared visibility

Fig 20: ETC MATISSE SNR values. Top left: squared coherent flux; top right: photometry; bottom left: squared visibility ; bottom right : closure phase error.

Fig 21: ASPRO2 SNR values. From top to bottom : Squared coherent flux, photometry, squared visibility

Fig 22: ETC MATISSE SNR values. Top left: squared coherent flux; top right: photometry; bottom left: squared visibility ; bottom right : closure phase error.

Conclusion on MATISSE N band comparison :

Good agreeement between both tools.

The SNR estimates are consistent for all observables at 10.5 microns, except T3phi_err that are very different at low SNR ~ 4 :

- ASPRO2 : error sampling (more realistic)

- MATISSE ETC : approximation SNR(V) / 3

